Closure properties of Context-free languages and Gmammars

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Former Professor & Head, Department of Computer Sc. & Engineering MBM Engineering College, Jodhpur

Friday 22nd January, 2021

Closure properties of CNF

• Intersection of two CFLs: Let G₁, G₂ be two context-free grammars.

 $\begin{array}{ll} G_1: & G_2: \\ S \to AB, \ S \to A, A \to 0A1 & S \to BA, \ S \to A, \ A \to 1A0 \\ B \to 0B, \ B \to 0 & A \to 10, \ B \to 0B, \ B \to 0 \\ \therefore \ \mathcal{L}(G_1) = \{0^n 1^n 0^+\} & \therefore \ \mathcal{L}(G_2) = \{0^+ 1^n 0^n\} \\ \therefore \ \mathcal{L}_1 \cap \mathcal{L}_2 = 0^n 1^n 0^n \notin CFL \ \text{for} \ n \ge 1. \end{array}$

- Union of two CFLs: For $L_1 = (G_1)$ and $L_2 = (G_2)$, $L_1 \cup L_2 \in CFL$. $S \rightarrow S_1 | S_2$, and $V_1 \cap V_2 = \phi$ $P = P_1 \cup P_2 \cup \{S \rightarrow S_1 | S_2\}$, $V = V_1 \cup V_2 \cup \{S\}$, $\Sigma = \Sigma_1 \cup \Sigma_2$. • Consistentiation of two CFLs: For $L_1 = (G_2)$ and $L_2 = (G_2)$.
- Concatenation of two CFLs: For $L_1 = (G_1)$ and $L_2 = (G_2)$, $L_1 \circ L_2 \in CFL$.

 $S
ightarrow S_1 \circ S_2$, and $V_1 \cap V_2 = \phi$

 $P = P_1 \cup P_2 \cup \{S \to S_1 \circ S_2\}, \ V = V_1 \cup V_2 \cup \{S\}, \ \Sigma = \Sigma_1 \cup \Sigma_2.$

• Kleene star of two CFLs: For $L_1 = (G_1)$ and $L_2 = (G_2)$, $L_1^* \in CFL$, where $S \to S_1 S | \varepsilon$, $V_1 \cap V_2 = \phi$.

Closure properties of CFLs

- CFL \cap Reg. lang \in CFL
- Let M_1 is NPDA accepting CF language L_1 by final state, and M_2 be a FA accepting L_2 . The PDA recognizing $L_1 \cap L_2$ simulates P and M simultaneously, like cross-product of two FA.
- We construct new NPDA M for $L_1 \cap L_2$ to simulate M_1 and M_2 in parallel.

Closure properties of CFLs

• CFL \cap Reg. lang \in CFL ...

- Simulaitng start state: For $q_0 \in M_1, p_0 \in M_2$ there is $(q_0, p_0) \in M$
- Simulaitng final state: For $q_1 \in F_1$, and $p_1, p_2 \in F_2$ there is $(q_1, p_1), (q_1, p_2) \in F$.

decision problems for CFLs

• Membership problem: For CFG G_1 , find if $w \in L(G)$?

The membership algorithm is: Parser. That is, if we are able to obtain a parse-tree for given word w, then $w_1L(G)$ else not.

• Empty Language: Is $L(G) = \phi$?

Algorithm:

- 1. Remove useless symbols
- 2. Check if start symbol is useless? If yes, then $L(G) = \phi$ else not.

• Infinite Language Problem: Is L = L(G) an infinite language? Algorithm:

- 1. remove useless symbols
- 2. remove null and unit productions
- 3. create dependency graph for variables

4. if there is a loop in the dependency graph, then L is infinite language else not.

decision problems for CFLs

- Infinite Language Problem: Is L = L(G) an infinite language? ...
 Let the gramamr be:
 - $S \rightarrow AB, A \rightarrow aCb|a, B \rightarrow bB|bb$
 - $C \rightarrow cBS$

Since there is a loop in the dependency graph, the language is infinite. The derivation is $S \Rightarrow^* (acbb)^i S(bbb)^i$.