Closure properties of Context-free languages and Gmammars

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in
Former Professor \& Head, Department of Computer Sc. \& Engineering MBM Engineering College, Jodhpur

Friday $22^{\text {nd }}$ January, 2021

Closure properties of CNF

- Intersection of two CFLs: Let G_{1}, G_{2} be two context-free grammars.

G_{1} :

$$
\begin{aligned}
& S \rightarrow A B, S \rightarrow A, A \rightarrow 0 A 1 \\
& B \rightarrow 0 B, B \rightarrow 0 \\
& \therefore L\left(G_{1}\right)=\left\{0^{n} 1^{n} 0^{+}\right\}
\end{aligned}
$$

$\therefore L_{1} \cap L_{2}=0^{n} 1^{n} 0^{n} \notin C F L$ for $n \geq 1$.

- Union of two CFLs: For $L_{1}=\left(G_{1}\right)$ and $L_{2}=\left(G_{2}\right), L_{1} \cup t_{2} \in C F L$.

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{2}, \text { and } V_{1} \cap V_{2}=\phi \\
& P=P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}, V=V_{1} \cup V_{2} \cup\{S\}, \Sigma=\Sigma_{1} \cup \Sigma_{2} .
\end{aligned}
$$

- Concatenation of two CFLs: For $L_{1}=\left(G_{1}\right)$ and $L_{2}=\left(G_{2}\right)$, $L_{1} \circ Ł_{2} \in C F L$. $S \rightarrow S_{1} \circ S_{2}$, and $V_{1} \cap V_{2}=\phi$ $P=P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} \circ S_{2}\right\}, V=V_{1} \cup V_{2} \cup\{S\}, \Sigma=\Sigma_{1} \cup \Sigma_{2}$.
- Kleene star of two CFLs: For $L_{1}=\left(G_{1}\right)$ and $L_{2}=\left(G_{2}\right), L_{1}^{*} \in C F L$, where $S \rightarrow S_{1} S \mid \varepsilon, V_{1} \cap V_{2}=\phi$.

Closure properties of CFLs

- CFL \cap Reg. lang $\in C F L$
- Let M_{1} is NPDA accepting CF language L_{1} by final state, and M_{2} be a FA accpeting L_{2}. The PDA recognizing $L_{1} \cap L_{2}$ simulates P and M simultaneously, like cross-product of two FA.
- We construct new NPDA M for $L_{1} \cap L_{2}$ to simulate M_{1} and M_{2} in parallel.

Closure properties of CFLs

- CFL \cap Reg. lang $\in C F L \ldots$

- Simulaitng start state: For $q_{0} \in M_{1}, p_{0} \in M_{2}$ there is $\left(q_{0}, p_{0}\right) \in M$
- Simulaitng final state: For $q_{1} \in F_{1}$, and $p_{1}, p_{2} \in F_{2}$ there is $\left(q_{1}, p_{1}\right),\left(q_{1}, p_{2}\right) \in F$.

decision problems for CFLs

- Membership problem: For CFG G_{1}, find if $w \in L(G)$?

The membership algorithm is: Parser. That is, if we are able to obtain a parse-tree for given word w, then $w i L(G)$ else not.

- Empty Language: Is $L(G)=\phi$?

Algorithm:

1. Remove useless symbols
2. Check if start symbol is useless? If yes, then $L(G)=\phi$ else not.

- Infinite Language Problem: Is $L=L(G)$ an infinite language?

Algorithm:

1. remove useless symbols
2. remove null and unit productions
3. create dependency graph for variables
4. if there is a loop in the dependency graph, then L is infinite language else not.

decision problems for CFLs

- Infinite Language Problem: Is $L=L(G)$ an infinite language? ...

Let the gramamr be:
$S \rightarrow A B, A \rightarrow a C b|a, B \rightarrow b B| b b$
$C \rightarrow c B S$

Since there is a loop in the dependency graph, the language is infinite. The derivation is $S \Rightarrow^{*}(a c b b)^{i} S(b b b)^{i}$.

