Pushdown Automata-PDA

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in
Formerly, Prof. \& Head, Department of CS
MBM Engineering College, Jodhpur

Tuesday $2^{\text {nd }}$ February, 2021

Introduction to Pushdown Automata (PDA)

Definition

A PDA consists: a infinite tape, a read head, set of states, and a start state. The additional components from FA are: Pushdown stack, initial symbol on stack, and stack alphabets (Γ). PDA $M=\left(Q, \Sigma, \delta, s, \Gamma, Z_{0}, F\right)$, where,
Q is finite set of states,
Σ is finite set of terminal symbols (language alphabets),
s start state $\left(q_{0}\right), F$ is final state.
δ is transition function: $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times \Gamma \rightarrow$ finite subset of $Q \times \Gamma$.
The transition function of a PDA is so defined, because a PDA may have transitions without any input read.

Introduction to PDA

The PDA has two types of storage; 1) infinite tape, just like the FA, 2) pushdown stack, is read-write memory of arbitrary size, with the restriction that it can be read or written at one end only.

Input tape

Definition

ID (Instantaneous Description) of a PDA is: ID: $Q \times \Sigma^{*} \times \Gamma^{*}$, start-id
$\in\left\{q_{0}\right\} \times \Sigma^{*} \times\left\{Z_{0}\right\}$, e.g., start ID may be (q_{0}, aaa, Z_{0}).
$\delta(q, a, Z)=$ finite subset of $\left\{\left(p_{1}, \beta_{1}\right),\left(p_{2}, \beta_{2}\right), \ldots,\left(p_{m}, \beta_{m}\right)\right\}$. Therefore, $\left.\left(p_{i}, \beta_{i}\right) \in \delta(q, a, z)\right)$, for $1 \leq i \leq m$.
By default, a PDA is non-derministic machine. Due to this fact, a PDA can manipulate the stack without any input from tape. Following are some of the transitions in PDA:

- Case - (a): A PDA currently in state q, stack symbol A, with input ε, moves to state q and write ε on the stack: $\delta(q, \varepsilon, A)=(q, \varepsilon)$.
- Case - (b): A PDA currently in state q, with ε input, and stack symbol ε, moves to state q, and writes A on stack: $\delta(q, \varepsilon, \varepsilon)=(q, A)$.
- Case - (c): A PDA in state q,
reads input a, with stack symbol Z, moves to state p and write β on stack:
$\delta(q, a, Z)=(p, \beta)$.

$(q, \varepsilon) \in \delta(q, \varepsilon, A)$
(a)

$(q, A) \in \delta(q, \varepsilon, \varepsilon)$
(b)

$(p, \beta) \in \delta(q, a, Z)$
(c)

Language recognition: $a^{n} b^{n}$

A move of a PDA is defined as $(q, a x, Z \alpha) \vdash_{M}\left(q^{\prime}, x, \beta \alpha\right)$, if $\left(q^{\prime}, \beta\right) \in(q, a, Z)$. (In $Z \alpha, Z$ is top symbol on stack)

Example

Construct a PDA to recognize $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.

$$
\begin{aligned}
& M=\left(Q, \Sigma, \delta, s, F, \Gamma, Z_{0}\right), \\
& \Sigma=\{a, b\}, \Gamma=\{A\} \\
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, F=\left\{q_{0}, q_{3}\right\} \\
& \delta\left(q_{0}, \varepsilon, \varepsilon\right)=\left(q_{1}, Z_{0}\right) \\
& \delta\left(q_{1}, a, \varepsilon\right)=\left(q_{1}, A\right) \\
& \delta\left(q_{1}, b, A\right)=\left(q_{2}, \varepsilon\right) \\
& \delta\left(q_{2}, b, A\right)=\left(q_{2}, \varepsilon\right) \\
& \delta\left(q_{2}, \varepsilon, Z_{0}\right)=\left(q_{3}, \varepsilon\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vdash\left(q_{2}, b, A Z_{0}\right) \\
& \vdash\left(q_{2}, \varepsilon, Z_{0}\right) \\
& \vdash\left(q_{3}, \varepsilon, \varepsilon\right), \text { the PDA halts \& accepts. }
\end{aligned}
$$

$$
\begin{aligned}
\left(q_{0}, a a b b, \varepsilon\right) & \vdash\left(q_{1}, a a b b, Z_{0}\right) \\
& \vdash\left(q_{1}, a b b, A Z_{0}\right) \\
& \vdash\left(q_{1}, b b, A A Z_{0}\right)
\end{aligned}
$$

Language Recognition: wcw ${ }^{R}$

Example

Construct a PDA to recognize $L=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}$.

Solution: Transition function, moves, and PDA:

$$
\begin{aligned}
& M=\left(Q, \Sigma, \delta, s, F, \Gamma, Z_{0}\right) \\
& \Sigma=\{a, b, c\}, d \in\{a, b\}, \\
& Q=\left\{q_{0}, q_{1}, q_{2}\right\}, F=\left\{q_{2}\right\}, \\
& \Gamma=\left\{a, b, Z_{0}\right\} \\
& \delta\left(q_{0}, d, \varepsilon\right)=\left(q_{0}, d\right) \\
& \delta\left(q_{0}, c, \varepsilon\right)=\left(q_{1}, \varepsilon\right) \\
& \delta\left(q_{1}, d, d\right)=\left(q_{1}, \varepsilon\right) \\
& \delta\left(q_{1}, \varepsilon, \varepsilon\right)=\left(q_{2}, \varepsilon\right)
\end{aligned}
$$

Note that we have not included the transitions corresponding to first writing Z_{0} on stack and finally retrieving it back. This is acceptable as PDA is non-deterministic.

- PDA moves

1. $(q, x, \alpha) \vdash^{*}\left(q^{\prime}, \varepsilon, \beta\right) \Rightarrow(q, x y, \alpha) \vdash^{*}\left(q^{\prime}, y, \beta\right)$
2. $(q, x y, \alpha) \vdash^{*}\left(q^{\prime}, y, \beta\right) \Rightarrow(q, x y, \alpha \gamma) \vdash^{*}\left(q^{\prime}, y, \beta \gamma\right)$

The case 1 ., above is obvious, however, the case 2 ., is not guaranteed due to the trace of computation shown below.

