Universal Turing Machine

Prof. (Dr.) K.R. Chowdhary

Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur

Monday $10^{\text {th }}$ April, 2017

- A 3-tape TM, 2D-TM, and NDTM can be simulated by a standatd TM. Also, A TM can be also simulated by a TM.
- Let Input $=[M, w]$ to a TM M^{\prime}. Output of M^{\prime} is what, when M runs with input w. M^{\prime} is Universal Turing machine (UTM).
- A UTM can be designed to
simulate the computations of an arbitrary TM M. To do so, input to UTM must contain representation of both machine M and input w to be processed by M.

- Let there is TM M that accepts by halting. The UTM M^{\prime} for this is:
with Input string $=R(M) w$, where $R(M)$ is representation of M.
- Output-1: Accept (indicates that M halts with input w), output-2: loops, i.e., M does not halt with input w, i.e.
computation of M does not terminate.
- The machine M^{\prime} is called universal TM, as computation of any Turing machine can be simulated by M^{\prime}.

Design a string representation of a TM M

Because of the ability to encode arbitrary symbols as strings over $\{0,1\}$, we consider Turing machine with inputs $\{0,1\}$ and tape symbols $\Gamma=\{0,1, B\}$
Encoding of elements of M :

Symbol	Encod
0	1
1	11
B	111
q_{0}	1
q_{1}	11
\ldots	\ldots
q_{n}	1^{n+1}
L	1
R	11

- The states of M are assumed to be $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$. TM M is defined by its transition function:

$$
\delta\left(q_{i}, a\right)=\left(q_{j}, b, d\right)
$$

where, $q_{i}, q_{j} \in Q ; a, b \in \Gamma ; d \in\{L, R\}$

- Let en(z) denote the encoding of z. Thus, transition
$\delta\left(q_{i}, a\right)=\left(q_{j}, b, d\right)$ is encoded by string:
en $\left(q_{i}\right) 0 e n(a) 0 e n\left(q_{j}\right) 0 e n(b) 0 e n(d)$.
The symbol 0 separates the different components of δ.

Encoding of elements of M

Representation of machine M is constructed from encoded transitions. Two consecutive 0s separate transitions. Beginning and end of complete representation are defined by three 0 s .

$$
\begin{array}{ll}
\text { Consider the Transitions: } & \\
\text { Transition } & \text { Encoding } \\
\delta\left(q_{0}, B\right)=\left(q_{1}, B, R\right) & 101110110111011 \\
\delta\left(q_{1}, 0\right)=\left(q_{0}, 0, L\right) & 1101010101 \\
\delta\left(q_{1}, 1\right)=\left(q_{2}, 1, R\right) & 110110111011011 \\
\delta\left(q_{2}, 1\right)=\left(q_{0}, 1, L\right) & 1110110101101
\end{array}
$$

- The machine M is represented by string: 000101110110111011 00110101010100110110111011011001110110101101000

Simulation of M on Universal TM M^{\prime}

Verification of representation of M : TM can be constructed to check whether an arbitrary string $u \in\{0,1\}^{*}$ is encoding of deterministic TM M. Computations examines whether 000 is prefix, followed by finite sequences of encoded transitions are separated by 00 s , then finally 000 .

- M is deterministic if $Q \times \Gamma$ in every encoded transition is unique.

Simulation of TM M on 3-tape DTM M^{\prime}

- Tape-1 holds $R(M) w$. Tape-3 simulates computations of of M for input w. Tape-2 acts as working tape.
- If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the M^{\prime} moves to right forever.
(1) w is copied from tape- 1 to 3 , with tape head at begin of w. \therefore tape- 3 is initial configuration of M with input w.
(2) Encoding of q_{0}, i.e., 1 is written tape-2. (for future steps, we call it q_{j}).
(3) Transition of M is simulated on tape-3. The next transition
is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.
(9) Tape- 1 is scanned for a and q_{i} as first two components of a transition. If not found, M^{\prime} halts by rejecting input.
(5) If tape- 1 consists the encoded information for above, i.e., $\delta\left(q_{i}, a\right)=\left(a_{j}, b, d\right)$, then
(a) q_{i} replaced by q_{j} on tape- 2 .
(b) b is written on tape 3 , and tape head on tape-3 is moved for direction given in d.
(3) Go back to step 2, and carry on computation by simulating M.

