Minimization of Finite Automata

Prof. (Dr.) K.R. Chowdhary

Email: kr.chowdhary@iitj.ac.in

Former Professor \& Head, Department of Computer Sc. \& Engineering MBM Engineering College, Jodhpur

Friday $22^{\text {nd }}$ January, 2021

Introduction

- Each DFA defines a unique language but reverse is not true.
- Larger number of states in FA require higher memory and computing power.
- An NFA of n states result to 2^{n} maximum number of states in an equivalent DFA, therefore design of DFA is crucial.
- Minimization of a DFA refers to detecting those states whose absence does not affect the language acceptability of DFA.
- A reduced Automata consumes lesser memory, and complexity of implementation is reduced. This results to faster execution time, easier to analyze.
- Unreachable states: If there does not exist any q^{\prime}, such that $\delta^{*}\left(q_{0}, w\right)=q^{\prime}$, then q^{\prime} is unreachable/unaccessible state.
- Dead state: $\forall a, a \in \Sigma, q$ is dead state if $\delta(q, a)=q$ and $q \in Q-F$.
- Reachability: FA M is accessible if $\exists w, w \in \Sigma^{*}$, and $\left(q_{0}, w\right) \vdash^{*}(q, \varepsilon)$ for all $q \in Q$. \vdash^{*} is called reachability relation.
- Indistinguishable states: Two states are indistinguishable if
their behavior are indistinguishable with respect to each other. For example, p, q are indistinguishable if $\delta^{*}(p, w)=\delta^{*}(q, w)=r \in Q$ for all $w \in \Sigma^{*}$.
- k-equivalence: p, q are k-equivalence if:
$\delta^{*}(q, w) \in F \Leftrightarrow \delta^{*}(p, w) \in F$, for all $w \in \Sigma^{*}$ and $|w| \leq k$; written as $p \sim_{k} q$.
If they are equivalent for all k, then $p \sim k$. The $p \sim q$ and $p \sim_{k} q$ are equivalent relations.

Minimization Example

Finite automata to be minimized

- q_{6} has no role, hence it can be removed.
- q_{1}, q_{5} are indistinguishable states because their behavior is identical for any string supplied at these states. These are called equivalent states, and can be merged.
- In merging of two equivalent states, one state is eliminated,
and the state which remains will have in addition, all incoming transitions from the removed state.
- Similarly, the states q_{0}, q_{4} are also indistinguishable states, hence they can also be merged. q_{3} is dead state.

Minimized FA
(3) Identify and remove all unreachable states: find all reachable states R, the non-reachable states are $Q-R$.

$$
\begin{aligned}
& R=\left\{q_{0}\right\} \\
& \text { while } \exists p, p \in R \wedge \exists a, a \in \Sigma, \\
& \text { and } \delta(p, a) \notin R \\
& \{ \\
& R=R \cup \delta(p, a) \\
& \}
\end{aligned}
$$

(2) Identify and merge of indistinguishable states.

- Identify and merge of dead states.
(1) A sequence w is accepted if $\delta^{*}(q, w) \in F$
Indistinguishability is an equivalence relation. Let p, q, r $\in Q$. Let $p \equiv q$, if they are indistinguishable. So,
$p \equiv p$; reflexive
$p \equiv q \Leftrightarrow q \equiv p ;$ symmetry
$p \equiv q, q \equiv r \Rightarrow p \equiv r ;$ transitivity, \therefore, indistinguishablity is an equivalence relation.
- Let $x, y \in \Sigma^{*}$, then x and y are said to be equivalent with respect to L (i.e. $x \approx_{L} y$), if for some $z \in \Sigma^{*}, x y \in L$ iff $y z \in L$.
- \approx_{L} relation is reflexive, symmetric, and transitive, \therefore, it is equivalence relation, which divides the language set
L into equivalence classes.
- For a DFA $M ; x, y \in \Sigma^{*}$ are equivalent with respect to M, if x, y both drive M from a state q_{0} to same state q^{\prime},
$\delta^{*}\left(q_{0}, x\right)=q^{\prime}$ and $\delta^{*}\left(q_{0}, y\right)=q^{\prime}$,
$\therefore x \approx_{M} y$

Minimization Example\#1

(3) There is no unreachable state
(2) Indistinguishable states
q_{1}, q_{2} are indistinguishable, and q_{0}, q_{3} are distinguishable
(0) Reduced automata: The set of distinguishable states are:
$\left[s_{0}\right]=\left\{q_{0}\right\},\left[s_{1}\right]=\left\{q_{1}, q_{2}\right\},\left[s_{2}\right]=\left\{q_{3}\right\}$.
Start and final states are $\left[s_{0}\right],\left[s_{2}\right]$.

Minimization Algorithm

The minimization algorithm is based on the following theorem:

Theorem

Let $\delta(p, a)=p^{\prime}$ and $\delta(q, a)=q^{\prime}$, for $a \in \Sigma$. If p^{\prime}, q^{\prime} are distinguishable then so are p, q.

Proof.

If p^{\prime}, q^{\prime} are distinguishable by wa then p, q are distinguishable by string w.

Minimization Algorithm(Table Filling Algorithm)

(1) Remove inaccessible/unreachable states:
delete $Q-Q_{R}$, where Q_{R} is set of accessible states.
(2) Marking distinguishable states:

- Mark p, q as distinguishable, where $p \in F, q \notin F$
- For all marked pairs p, q and $a \in \Sigma$, if $\delta(p, a), \delta(q, a)$ is already marked distinguishable then mark p, q as distinguishable.
(3) Construct reduced automata:
- Let the set of indistinguishable(equivalent) states be sets $\left[p_{i}\right],\left[q_{j}\right], \ldots$ such that $\forall i, j\left[p_{i}\right] \cap\left[q_{j}\right]=\phi$ and $\left[p_{i}\right] \cup\left[q_{j}\right] \cup \cdots=Q_{R}$.
- For each $\delta\left(p_{i}, a\right)=q_{j}$, add an edge from $\left[p_{i}\right]$ to $\left[q_{j}\right]$
(0 Mark the start and final states:
- if $q_{0} \in\left[p_{i}\right]$ then mark $\left[p_{i}\right]$ as start state,
- if $q_{f} \in F$, then mark $\left[q_{f}\right]$ as final state.

Implementation of Table Filling Algorithm

Steps:
(3) Let $M=(Q, \Sigma, \delta, s, F)$. Remove all the non-reachable states.
(2) For $p \in F$ and $q \in Q-F$, put " x " in table at (p, q). This shows that p, q are distinguishable.
© If $\exists w$, such that $\delta^{*}(p, w) \in F$ and $\delta^{*}(q, w) \notin F$, mark (p, q) as distinguishable.
(1) Recursion rule: if $\delta^{*}(p, w)=r, \delta^{*}(q, w)=s$, and (r, s) were earlier proved distinguishable, then mark (p, q) also distinguishable in the table.

Example: Table Filling algorithm to minimize a FA

- Consider that we want to minimize the FA shown above. The state q_{3} is unreachable, so it can be dropped.
- Next, we mark the distinguishable states at begin as final and non-final states. and make their entries in table as $\left(q_{2}, q_{0}\right),\left(q_{2}, q_{1}\right),\left(q_{4}, q_{2}\right),\left(q_{5}, q_{2}\right),\left(q_{6}, q_{2}\right),\left(q_{7}, q_{2}\right)$ and indicate these by mark "x."

Example: Table Filling algorithm to minimize a FA

q_{1}	x					
q_{2}	x	x				
q_{4}		x	x			
q_{5}	x	x	X	X		
q_{6}	x	X	x	X	x	
q_{7}			X	x	x	x
	q_{0}	q_{1}	q_{2}	q_{4}	q_{5}	q_{6}

- Next we consider the case $\delta\left(q_{0}, 1\right)=q_{5}, \delta\left(q_{1}, 1\right)=q_{2}$. Since $\left(q_{5}, q_{2}\right)$ are already marked distinguishable, therefore, $\left(q_{0}, q_{1}\right)$ are also distinguishable.
- Like this we have filled the table shown above. The unmarked are indistinguishable states.

Example: Table Filling algorithm to minimize a FA...

- Only states pairs which are not marked distinguishable are $\left\{q_{0}, q_{4}\right\}$ and $\left\{q_{1}, q_{7}\right\}$. The automata shown in figure above is reduced automata.

