Minimization of Finite Automata

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Former Professor & Head, Department of Computer Sc. & Engineering MBM Engineering College, Jodhpur

Friday 22nd January, 2021

- Each DFA defines a unique language but reverse is not true.
- Larger number of states in FA require higher memory and computing power.
- An *NFA* of *n* states result to 2^n maximum number of states in an equivalent *DFA*, therefore design of *DFA* is crucial.
- Minimization of a *DFA* refers to detecting those states whose absence does not affect the language acceptability of *DFA*.
- A reduced Automata consumes lesser memory, and complexity of implementation is reduced. This results to faster execution time, easier to analyze.

Some definitions

- Unreachable states: If there does not exist any q', such that $\delta^*(q_0, w) = q'$, then q' is unreachable/unaccessible state.
- Dead state: $\forall a, a \in \Sigma, q$ is dead state if $\delta(q, a) = q$ and $q \in Q F$.
- Reachability: FA M is accessible if ∃w, w ∈ Σ*, and (q₀, w) ⊢* (q, ε) for all q ∈ Q. ⊢* is called reachability relation.
- Indistinguishable states: Two states are indistinguishable if

their behavior are indistinguishable with respect to each other. For example, p,q are indistinguishable if $\delta^*(p,w) = \delta^*(q,w) = r \in Q$ for all $w \in \Sigma^*$.

• k-equivalence: p, q are k-equivalence if: $\delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F$, for all $w \in \Sigma^*$ and $|w| \le k$; written as $p \sim_k q$. If they are equivalent for all k, then $p \sim k$. The $p \sim q$ and $p \sim_k q$ are equivalent relations.

Minimization Example

- q₆ has no role, hence it can be removed.
- q₁, q₅ are indistinguishable states because their behavior is identical for any string supplied at these states. These are called equivalent states, and can be merged.
- In merging of two equivalent states, one state is eliminated,

and the state which remains will have in addition, all incoming transitions from the removed state.

Similarly, the states q₀, q₄ are also indistinguishable states, hence they can also be merged. q₃ is dead state.

Formalism for minimization

Identify and remove all unreachable states: find all reachable states R, the non-reachable states are Q - R.

$$R = \{q_0\}$$

while $\exists p, p \in R \land \exists a, a \in \Sigma$
and $\delta(p, a) \notin R$
 $\{$
 $R = R \cup \delta(p, a)$
 $\}$

 Identify and merge of indistinguishable states.

- Identify and merge of dead states.
- Solution A sequence *w* is accepted if $δ^*(q, w) ∈ F$

Indistinguishability is an equivalence relation. Let $p, q, r \in Q$. Let $p \equiv q$, if they are indistinguishable. So,

 $p \equiv p$; reflexive

 $p \equiv q \Leftrightarrow q \equiv p$; symmetry

 $p \equiv q, q \equiv r \Rightarrow p \equiv r;$ transitivity, \therefore , indistinguishablity is an equivalence relation.

Formalism for minimization

- Let $x, y \in \Sigma^*$, then x and y are said to be *equivalent with respect* to L (i.e. $x \approx_L y$), if for some $z \in \Sigma^*$, $xy \in L$ iff $yz \in L$.
- ≈_L relation is *reflexive*, symmetric, and transitive, ∴, it is *equivalence* relation, which divides the language set

L into equivalence classes.

• For a *DFA* M; $x, y \in \Sigma^*$ are equivalent with respect to M, if x, y both drive M from a state q_0 to same state q', $\delta^*(q_0, x) = q'$ and $\delta^*(q_0, y) = q'$.

 \therefore , $x \approx_M y$

Minimization Example#1

- There is no unreachable state
- Indistinguishable states

 q_1, q_2 are indistinguishable, and q_0, q_3 are distinguishable

Reduced automata: The set of distinguishable states are:
[s₀] = {q₀}, [s₁] = {q₁, q₂}, [s₂] = {q₃}.
Start and final states are [s₀], [s₂].

The minimization algorithm is based on the following theorem:

Theorem

Let $\delta(p,a) = p'$ and $\delta(q,a) = q'$, for $a \in \Sigma$. If p',q' are distinguishable then so are p,q.

Proof.

If p', q' are distinguishable by *wa* then p, q are distinguishable by string *w*.

Minimization Algorithm(Table Filling Algorithm)

Remove inaccessible/unreachable states:

delete $Q - Q_R$, where Q_R is set of accessible states.

- Marking distinguishable states:
 - Mark p,q as distinguishable, where $p \in F, q \notin F$
 - For all marked pairs p, q and $a \in \Sigma$, if $\delta(p, a), \delta(q, a)$ is already marked distinguishable then mark p, q as distinguishable.

Construct reduced automata:

- Let the set of indistinguishable(equivalent) states be sets $[p_i], [q_j], \ldots$ such that $\forall i, j \ [p_i] \cap [q_i] = \phi$ and $[p_i] \cup [q_i] \cup \cdots = Q_R$.
- For each $\delta(p_i, a) = q_j$, add an edge from $[p_i]$ to $[q_j]$
- Mark the start and final states:
 - if $q_0 \in [p_i]$ then mark $[p_i]$ as start state,
 - if $q_f \in F$, then mark $[q_f]$ as final state.

Steps:

- Let $M = (Q, \Sigma, \delta, s, F)$. Remove all the non-reachable states.
- So For $p \in F$ and $q \in Q F$, put "x" in table at (p,q). This shows that p,q are distinguishable.
- If ∃w, such that δ^{*}(p,w) ∈ F and δ^{*}(q,w) ∉ F, mark (p,q) as distinguishable.
- Recursion rule: if δ*(p, w) = r, δ*(q, w) = s, and (r, s) were earlier proved distinguishable, then mark (p, q) also distinguishable in the table.

Example: Table Filling algorithm to minimize a FA

- Consider that we want to minimize the FA shown above. The state q_3 is unreachable, so it can be dropped.
- Next, we mark the distinguishable states at begin as final and non-final states. and make their entries in table as (q2, q0), (q2, q1), (q4, q2), (q5, q2), (q6, q2), (q7, q2) and indicate these by mark "x."

Example: Table Filling algorithm to minimize a FA ...

	q_0	q_1	q_2	q_4	q_5	q_6
q_7			х	х	х	х
q_6	x	x	х	x	x	
q_5	x	x	x	х		
q_4		х	х		_	
q_2	х	х		_		
q_1	х					

- Next we consider the case δ(q₀,1) = q₅, δ(q₁,1) = q₂. Since (q₅,q₂) are already marked distinguishable, therefore, (q₀,q₁) are also distinguishable.
- Like this we have filled the table shown above. The unmarked are indistinguishable states.

Example: Table Filling algorithm to minimize a FA...

• Only states pairs which are not marked distinguishable are $\{q_0, q_4\}$ and $\{q_1, q_7\}$. The automata shown in figure above is reduced automata.