Testing Regularity of Languages

Prof. (Dr.) K.R. Chowdhary

Email: kr.chowdhary@iitj.ac.in

Former Professor \& Head, Department of Computer Sc. \& Engineering MBM Engineering College, Jodhpur

Friday $22^{\text {nd }}$ January, 2021

Testing regularity - Intro

Consider language
$L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. While reading from tape the FA has to remember arbitrarily large number of a 's to compare later with number of b 's.
Since, there is no arbitrary size storage in FA, no FA can recognize this language, hence L is not regular.
Other proof: Since a string in L can be arbitrarily large and states
are finite, some state will be revisited (say $q_{i}=q_{j}, i \neq j$) in the process of recognition. Hence, for some $m \neq n$, there may be $\delta^{*}\left(q_{0}, a^{m}\right)=q_{i}$ and $\delta^{*}\left(q_{0}, a^{n}\right)=q_{i}$.

$$
\begin{aligned}
\delta^{*}\left(q_{0}, a^{m} a^{n}\right) & =\delta^{*}\left(\delta^{*}\left(q_{0}, a^{m}\right), b^{n}\right) \\
& =\delta^{*}\left(q_{i}, b^{n}\right) \\
& =q_{f} .
\end{aligned}
$$

Kleene star properties of Regular languages

Let $M=(Q, \Sigma, \delta, s, F),|Q|=n, s=q_{0}, q_{m} \in F, m \geq n$, and $w=a_{1} a_{2} \ldots a_{m}$. Since $|w|>|Q|$, some states are repeated due to pigeonhole principle. Say, one state revisited is $q_{i}=q_{j}$ for $0 \leq i<j \leq m$. Thus, the state sequence visited during the recognition is:
$q_{0} \ldots q_{i-1} q_{i}, q_{i+1} \ldots q_{j-1} q_{j}, q_{j+1} \ldots q_{m}$.

The string w is recognized through the path FA as follows:

$$
\begin{aligned}
\delta^{*}\left(q_{0}, a_{1} a_{2} \ldots a_{m}\right) & =\delta^{*}\left(\delta^{*}\left(q_{0}, a_{1} a_{2} \ldots a_{i}\right), a_{j+1} a_{j+2} \ldots a_{m}\right) \\
& =\delta^{*}\left(q_{i}, a_{j+1} a_{j+2} \ldots a_{m}\right) \\
& =\delta^{*}\left(q_{j}, a_{j+1} a_{j+2} \ldots a_{m}\right)=q_{m} \in F
\end{aligned}
$$

Kleene star properties of Regular languages...

Therefore $a_{1} a_{2} \ldots a_{i} a_{i+1} \ldots a_{j} a_{j+1} \ldots a_{m} \in L(M)$. Also, $a_{1} a_{2} \ldots a_{i} a_{j+1} \ldots a_{m} \in L(M)$. Since, $q_{i}=q_{j}$, the substring $a_{i+1} \ldots a_{j-1}$ can be repeated an arbitrary times (pumped), and still the string w will be recognized, i.e.,

$$
a_{1} a_{2} \ldots a_{i}\left(a_{i+1} \ldots a_{j}\right)^{k} a_{j+1} \ldots a_{m} \in L(M), \text { for } k \geq 0
$$

The above is specified in the form of a lemma, given below.

Lemma

(Pumping Lemma.) Given a $F A M,|Q|=n, w \in L(M),|w| \geq n$, there exists a decomposition of w as $x y z$, such that $|x y| \leq n,|y| \geq 1, k \geq 0$, so that there is always $x y^{k} z \in L(M)$.

Proof.

The proof has been discussed above using the diagram. If a language string w fails to satisfy the criteria $x y^{k} z \in L(M)$, then it is not regular. Note that pumping lemma apply to only infinite language, and it is for negative, i.e., used to prove the non-regularity of a language, for that some how we should have strategy to show that $x y^{k} z \notin L(M)$.

Testing non-regularity

Example

Show that $L=\left\{a^{n} \mid n\right.$ is prime $\}$ is non-regular.

Solution

Solution: let $w=x y^{k} z, k \geq 0, x=a^{p}, y=a^{q}, z=a^{r},|q| \geq 1$. Therefore $w=a^{p}\left(a^{q}\right)^{k} a^{r}=a^{p+k q+r}$. Thus, we need to show that $p+k q+r$ is not prime. Let us assume that $k=p+2 q+r+2$, we have;

$$
\begin{aligned}
p+k q+r & =p+(p+2 q+r+2) q+r \\
& =p+p q+2 q^{2}+r q+2 q+r \\
& =1(p+2 q+r)+q(p+2 q+r) \\
& =(p+2 q+r)(1+q)
\end{aligned}
$$

Since the string $w=a^{n}$ can be factorized in pumping lemma, the language is not regular.

Myhill-Nerode(MN) Theorem

The pumping lemma holds for some non-regular languages only, and does not provide sufficient condition to prove that a language is regular. If pumping lemma fails to prove non-regularity, it does not imply otherwise.

Theorem

(MN.) For $x, y, z \in \Sigma^{*}$, a "distinguishing extension" z is such that $x z \in F$ but $y z \notin F$. Therefore $x \sim y$ iff there is no distinguishing extension z. The \sim is equivalence relation which divides all $w \in \Sigma^{*}$ into equivalence classes.

If $x \sim y$, and there is $x z \sim y z$, and $x, y, z \in \Sigma^{*}$, then equivalence relation is called right invariant. The $x \sim_{L} y$ is equivalence relation for language L if $x z \in L \Leftrightarrow y z \in L$.

Definition

Index of a equivalence class is total number of equivalence classes in the language. $x \sim_{M} y$ is equivalence relation for DFA M if same state is reachable for inputs $x, y \in \Sigma^{*}$.

Myhill-Nerode(MN) Theorem

Definition

(ver. 2 MN theorem.) If $\exists w \in \Sigma^{*}$ for states p, q such that $\delta^{*}(p, w) \in F \wedge$ $\left.\delta^{*}(q, w) \notin F\right)$, then w is distinguishing string for p, q. If there does not exists any distinguishing string for p, q then they are not equivalent.

Theorem

MN theorem states that L is regular iff \sim_{L} has finite index, and number of states in the smallest DFA recognizing L is equal to index of the equivalence class in \sim_{L}.

Intuition of above is: if such a minimal automaton is obtained, then any two string x, y driving the automaton into the same state, will be in the same equivalence class. l.e., the equivalence relation \sim_{L} creates partition set on the strings
Σ^{*}, and size of partition set is number of states in the FA.

MN Theorem: Example

Example

Consider a language on $\Sigma=\{a, b\}$, such that last but one character in w is b.

Solution

The FA and equivalence classes are shown below.

In the diagram below, the substrings in " $\varepsilon, a, . *$ ba": before dot $\operatorname{sign}(\varepsilon, a)$ correspond to equivalent strings x, y in
equivalence relation $x \sim y$. The part after dot, i.e. *ba is distinguishing extension z, such that $x z \sim y z$. Patterns in other three equivalence classes are on the same lines.

MN Theorem: Examples

Example

Show that the language on $\downharpoonright=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is non-regular.

Solution

Let $S=\{\varepsilon, a, a a, a a a, a a a a, \ldots\}$ is infinite over $\{a, b\}$. Let a^{k} and a^{m} are pair-wise distinguishable for $k \neq m$.
Consider distinguishing extension $z=b^{m}$. Appending z with pair-wise distinguishing strings, we have $a^{k} b^{m} \notin L$ and $a^{m} b^{m} \in L$. Therefore a^{k}, a^{m} are distinguishable w.r.t. L. Since k and m are taken arbitrary numbers, there are arbitrarily large number of pair-wise distinguishing strings. This corresponds to infinite states, hence the language is not regular.

