Testing Regularity of Languages

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Former Professor & Head, Department of Computer Sc. & Engineering MBM Engineering College, Jodhpur

Friday 22nd January, 2021

Consider language $L = \{a^n b^n | n \ge 0\}$. While reading from tape the FA has to remember arbitrarily large number of *a*'s to compare later with number of *b*'s. Since, there is no arbitrary size storage in FA, no FA can recognize this language, hence *L* is not regular.

Other proof: Since a string in *L* can be arbitrarily large and states

are finite, some state will be revisited (say $q_i = q_j, i \neq j$) in the process of recognition. Hence, for some $m \neq n$, there may be $\delta^*(q_0, a^m) = q_i$ and $\delta^*(q_0, a^n) = q_i$.

$$egin{array}{ll} \delta^*(q_0,a^ma^n)&=\delta^*(\delta^*(q_0,a^m),b^n)\ &=\delta^*(q_i,b^n)\ &=q_f. \end{array}$$

Kleene star properties of Regular languages

Let $M = (Q, \Sigma, \delta, s, F)$, $|Q| = n, s = q_0, q_m \in F$, $m \ge n$, and $w = a_1a_2...a_m$. Since |w| > |Q|, some states are repeated due to pigeonhole principle. Say, one state revisited is $q_i = q_j$ for $0 \le i < j \le m$. Thus, the state sequence visited during the recognition is:

 $q_0 \ldots q_{i-1}q_i, q_{i+1} \ldots q_{j-1}q_j, q_{j+1} \ldots q_m.$

The string w is recognized through the path FA as follows:

$$egin{aligned} \delta^*(q_0, a_1 a_2 \dots a_m) &= \delta^*(\delta^*(q_0, a_1 a_2 \dots a_j), a_{j+1} a_{j+2} \dots a_m) \ &= \delta^*(q_i, a_{j+1} a_{j+2} \dots a_m) \ &= \delta^*(q_j, a_{j+1} a_{j+2} \dots a_m) = q_m \in F. \end{aligned}$$

Kleene star properties of Regular languages...

Therefore $a_1a_2...a_ia_{i+1}...a_ja_{j+1}...a_m \in L(M)$. Also, $a_1a_2...a_ia_{j+1}...a_m \in L(M)$. Since, $q_i = q_j$, the substring $a_{i+1}...a_{j-1}$ can be repeated an arbitrary times (pumped), and still the string w will be recognized, i.e.,

$$a_1a_2\ldots a_i(a_{i+1}\ldots a_j)^ka_{j+1}\ldots a_m\in L(M), \text{ for } k\geq 0$$

The above is specified in the form of a lemma, given below.

Lemma

(Pumping Lemma.) Given a FA M, $|Q| = n, w \in L(M), |w| \ge n$, there exists a decomposition of w as xyz, such that $|xy| \le n, |y| \ge 1, k \ge 0$, so that there is always $xy^k z \in L(M)$.

Proof.

The proof has been discussed above using the diagram. If a language string w fails to satisfy the criteria $xy^k z \in L(M)$, then it is not regular. Note that pumping lemma apply to only infinite language, and it is for negative, i.e., used to prove the non-regularity of a language, for that some how we should have strategy to show that $xy^k z \notin L(M)$.

Example

Show that $L = \{a^n \mid n \text{ is prime}\}\$ is non-regular.

Solution

Solution: let $w = xy^k z$, $k \ge 0$, $x = a^p$, $y = a^q$, $z = a^r$, $|q| \ge 1$. Therefore $w = a^p (a^q)^k a^r = a^{p+kq+r}$. Thus, we need to show that p + kq + r is not prime. Let us assume that k = p + 2q + r + 2, we have;

$$p + kq + r = p + (p + 2q + r + 2)q + r$$

= p + pq + 2q² + rq + 2q + r
= 1(p + 2q + r) + q(p + 2q + r)
= (p + 2q + r)(1 + q)

Since the string $w = a^n$ can be factorized in pumping lemma, the language is not regular.

The pumping lemma holds for some non-regular languages only, and does not provide sufficient condition to prove that a language is regular. If pumping lemma fails to prove non-regularity, it does not imply otherwise.

Theorem

(MN.) For $x, y, z \in \Sigma^*$, a "distinguishing extension" z is such that $xz \in F$ but $yz \notin F$. Therefore $x \sim y$ iff there is no distinguishing extension z. The \sim is equivalence relation which divides all $w \in \Sigma^*$ into equivalence classes.

If $x \sim y$, and there is $xz \sim yz$, and $x, y, z \in \Sigma^*$, then equivalence relation is called right invariant. The $x \sim_L y$ is equivalence relation for language Lif $xz \in L \Leftrightarrow yz \in L$.

Definition

Index of a equivalence class is total number of equivalence classes in the language. $x \sim_M y$ is equivalence relation for *DFA* M if same state is reachable for inputs $x, y \in \Sigma^*$.

Myhill-Nerode(MN) Theorem

Definition

(ver.2 MN theorem.) If $\exists w \in \Sigma^*$ for states p, q such that $\delta^*(p, w) \in F \land \delta^*(q, w) \notin F$), then w is distinguishing string for p, q. If there does not exists any distinguishing string for p, q then they are not equivalent.

Theorem

MN theorem states that L is regular iff \sim_L has finite index, and number of states in the smallest DFA recognizing L is equal to index of the equivalence class in \sim_L .

Intuition of above is: if such a minimal automaton is obtained, then any two string x, y driving the automaton into the same state, will be in the same equivalence class. I.e., the equivalence relation \sim_L creates partition set on the strings $\Sigma^*,$ and size of partition set is number of states in the FA.

MN Theorem: Example

Example

Consider a language on $\Sigma = \{a, b\}$, such that last but one character in w is b.

Solution

The FA and equivalence classes are shown below.

In the diagram below, the substrings in " ε , a, . * ba": before dot sign (ε , a) correspond to equivalent strings x, y in equivalence relation $x \sim y$. The part after dot, i.e. *ba is distinguishing extension z, such that $xz \sim yz$. Patterns in other three equivalence classes are on the same lines.

Example

Show that the language on $\mathbf{L} = \{a^n b^n | n \ge 0\}$ is non-regular.

Solution

Let $S = \{\varepsilon, a, aa, aaa, aaa, aaa, ...\}$ is infinite over $\{a, b\}$. Let a^k and a^m are pair-wise distinguishable for $k \neq m$. Consider distinguishing extension $z = b^m$. Appending z with pair-wise distinguishing strings, we have $a^k b^m \notin L$ and $a^m b^m \in L$. Therefore a^k, a^m are distinguishable w.r.t. L. Since k and m are taken arbitrary numbers, there are arbitrarily large number of pair-wise distinguishing strings. This corresponds to infinite states, hence the language is not regular.