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Testing regularity - Intro

Consider language
L = {anbn|n ≥ 0}. While reading
from tape the FA has to remember
arbitrarily large number of a’s to
compare later with number of b’s.
Since, there is no arbitrary size
storage in FA, no FA can recognize
this language, hence L is not
regular.
Other proof: Since a string in L
can be arbitrarily large and states

are finite, some state will be
revisited (say qi = qj , i 6= j) in the
process of recognition. Hence, for
some m 6= n, there may be
δ ∗(q0,a

m) = qi and δ ∗(q0,a
n) = qi .

δ
∗(q0,a

man) = δ
∗(δ

∗(q0,a
m),bn)

= δ
∗(qi ,b

n)

= qf .
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Kleene star properties of Regular languages

Let M = (Q,Σ,δ ,s,F ), |Q| = n,s = q0,qm ∈ F , m ≥ n, and
w = a1a2 . . .am. Since |w |> |Q|, some states are repeated due to
pigeonhole principle. Say, one state revisited is qi = qj for 0 ≤ i < j ≤m.
Thus, the state sequence visited during the recognition is:
q0 . . .qi−1qi ,qi+1 . . .qj−1qj ,qj+1 . . .qm.

b b b b b b b

b

b b

b

b

b b b b bb
q0 q2 qi−1 qi = qj

qi+1 qj−1

qj+1 qm

a1 a2 ai
aj

am
q1

b b

b
b

b

The string w is recognized through the path FA as follows:

δ
∗(q0,a1a2 . . .am) = δ

∗(δ
∗(q0,a1a2 . . .ai),aj+1aj+2 . . .am)

= δ
∗(qi ,aj+1aj+2 . . .am)

= δ
∗(qj ,aj+1aj+2 . . .am) = qm ∈ F .
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Kleene star properties of Regular languages...

Therefore a1a2 . . .aiai+1 . . .ajaj+1 . . .am ∈ L(M). Also,
a1a2 . . .aiaj+1 . . .am ∈ L(M). Since, qi = qj , the substring ai+1 . . .aj−1 can
be repeated an arbitrary times (pumped), and still the string w will be
recognized, i.e.,

a1a2 . . .ai(ai+1 . . .aj)
kaj+1 . . .am ∈ L(M), for k ≥ 0

The above is specified in the form of a lemma, given below.

Lemma

(Pumping Lemma.) Given a FA M, |Q| = n,w ∈ L(M), |w | ≥ n, there
exists a decomposition of w as xyz, such that |xy | ≤ n, |y | ≥ 1,k ≥ 0, so
that there is always xykz ∈ L(M).

Proof.

The proof has been discussed above using the diagram. If a language
string w fails to satisfy the criteria xykz ∈ L(M), then it is not regular.
Note that pumping lemma apply to only infinite language, and it is for
negative, i.e., used to prove the non-regularity of a language, for that
some how we should have strategy to show that xykz /∈ L(M).
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Testing non-regularity

Example

Show that L = {an | n is prime} is non-regular.

Solution

Solution: let w = xykz, k ≥ 0, x = ap,y = aq,z = ar , |q| ≥ 1. Therefore
w = ap(aq)kar = ap+kq+r . Thus, we need to show that p+ kq+ r is not
prime. Let us assume that k = p+ 2q+ r + 2, we have;

p+ kq+ r = p+ (p+ 2q+ r + 2)q+ r

= p+pq+ 2q2 + rq+ 2q+ r

= 1(p+ 2q+ r) +q(p+ 2q+ r)

= (p+ 2q+ r)(1 +q)

Since the string w = an can be factorized in pumping lemma, the
language is not regular.
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Myhill-Nerode(MN) Theorem

The pumping lemma holds for some non-regular languages only, and does
not provide sufficient condition to prove that a language is regular. If
pumping lemma fails to prove non-regularity, it does not imply otherwise.

Theorem

(MN.) For x ,y ,z ∈ Σ∗, a “distinguishing extension” z is such that xz ∈ F
but yz /∈ F . Therefore x ∼ y iff there is no distinguishing extension z.
The ∼ is equivalence relation which divides all w ∈ Σ∗ into equivalence
classes.

If x ∼ y , and there is xz ∼ yz , and x ,y ,z ∈ Σ∗, then equivalence relation
is called right invariant. The x ∼L y is equivalence relation for language L
if xz ∈ L⇔ yz ∈ L.

Definition

Index of a equivalence class is total number of equivalence classes in
the language. x ∼M y is equivalence relation for DFA M if same state is
reachable for inputs x ,y ∈ Σ∗.
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Myhill-Nerode(MN) Theorem

Definition

(ver.2 MN theorem.) If ∃w ∈ Σ∗ for states p,q such that δ ∗(p,w) ∈ F∧
δ ∗(q,w) /∈ F ), then w is distinguishing string for p,q. If there does not
exists any distinguishing string for p,q then they are not equivalent.

Theorem

MN theorem states that L is regular iff ∼L has finite index, and number
of states in the smallest DFA recognizing L is equal to index of the
equivalence class in ∼L.

Intuition of above is: if such a
minimal automaton is obtained,
then any two string x ,y driving the
automaton into the same state, will
be in the same equivalence class.
I.e., the equivalence relation ∼L

creates partition set on the strings

Σ∗, and size of partition set is
number of states in the FA.

Σ
∗

kr chowdhary TOC 7/ 9



MN Theorem: Example

Example

Consider a language on Σ = {a,b}, such that last but one character in w
is b.

Solution

The FA and equivalence classes are
shown below.

q0 q1

q3 q2

b

a

b

b

a

b

a

a
a

In the diagram below, the
substrings in “ε,a, .∗ba”: before
dot sign (ε,a) correspond to
equivalent strings x ,y in

equivalence relation x ∼ y. The
part after dot, i.e. ∗ba is
distinguishing extension z, such
that xz ∼ yz. Patterns in other
three equivalence classes are on the
same lines.

ε, a, . ∗ ba b, . ∗ ab

. ∗ bb
. ∗ ba

q0 q1

q3 q2
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MN Theorem: Examples

Example

Show that the language on  L = {anbn|n ≥ 0} is non-regular.

Solution

Let S = {ε,a,aa,aaa,aaaa, . . .} is infinite over {a,b}. Let ak and am are
pair-wise distinguishable for k 6= m.
Consider distinguishing extension z = bm. Appending z with pair-wise
distinguishing strings, we have akbm /∈ L and ambm ∈ L. Therefore ak ,am

are distinguishable w.r.t. L. Since k and m are taken arbitrary numbers,
there are arbitrarily large number of pair-wise distinguishing strings. This
corresponds to infinite states, hence the language is not regular.
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