
Context-free languages and Grammars

KR Chowdhary
Professor & Head

Email: kr.chowdhary@acm.org

webpage:www.krchowdhary.com

Department of Computer Science and Engineering
MBM Engineering College, Jodhpur

September 26, 2011

kr chowdhary TOC 1/ 9

Introduction

Context-free languages(CFL) are more powerful than regular
languages. Like, regular expressions are recognizers of regular
languages, the context-free grammars (CFG) are generators of CFL.
CFG is finite specification of rules to generate infinite context-free
language.
Regular languages are subset of CFL.
CFLs and CFGs are fundamentals to computer science, because they
help in describing the structure of programming languages.
All the HLL are in the category of CFL. Though natural languages
(NLs) are not CFL, but their analysis is possible only when they are
treated as CFLs.
Consider generating all the strings of regex a∗(b∗+ c∗). The
approach can be:
a. write character a zero or more times
b. arbitrarily choose b or c and write it arbitrary times
c. write c .
if this string already exists in the list, ignore it, else keep the string.
Running this method (algorithm) indefinitely, one can list all the
strings (sentences) of languages specified by regex above.

kr chowdhary TOC 2/ 9

Generating Language strings

Let L = L(a∗(b∗+ c∗) is language
corresponding to the regex. We can
generate all the strings by an alternate
method, using production/substitution
rules:

a. S → AMb

b. A→ ε
c. A→ aA

d. M → B

e. M → C

f. B → ε
g. B → bB

h. C → ε
i. C → ε
j. C → cC

Consider generating the string
w = aaccb using these production
rules. (The expression string, like
aacCb or AMb, during the
derivation is called sential form).

S ⇒ AMb ;by rule a

⇒ aAMb ;by rule c

⇒ aaAMb ;by rule c

⇒ aaMb ;by rule b

⇒ aaCb ;by rule e

⇒ aacCb ;by rule j

⇒ aaccCb ;by rule j

⇒ aaccb ;by rule i

∴,aaccb ∈ L.

The symbol → stand for “can be substituted by”, and ⇒ stand for
“derives”.

kr chowdhary TOC 3/ 9

Generating language strings

Let us try to generate the strings of
language L = {anbn|n ≥ 0} using
similar rules. The rules this time are:
S → aSb, S → ε. Consider deriving
w = aaabbb.

w ⇒ aSb; apply first rule

⇒ aaSbb; apply first rule

⇒ aaaSbbb; apply first rule

⇒ aaabbb; apply second rule

Therefore, w ⇒∗ aaabbb, and the
language is L = {anbn|n ≥ 0}. Now,
there is time to define a the
generator of these languages, the
grammar. The context-free grammar
G is defined as G = {V ,Σ,S ,P},
where

V is finite set of variables
symbols, appearing in the
process of derivation

Σ is set of terminal symbols
(appearing in the final
generated sentence), V ∩Σ = φ
S is start symbol

P is set of production/
substitution rules of the form
A→ α, where A ∈ V and
α ∈ (V ∪Σ)∗.

Symbols in upper case in the
begin of English alphabets are
used as variable symbols
(non-terminal symbols), i.e.
A,B,C ,D

kr chowdhary TOC 4/ 9

Derivations

Definition:Context-free grammar: A context-free grammar is regular
if productions are like:
A→ a, A→ aB, A→ ε 2
where, a ∈ Σ, and A,B ∈ V (are non-terminals). For the regular
expression a∗(b∗+ c∗)b, a CFG was used in the previous slides to
generate the regular language, which is generted by the regex also.
This confirms the definition.
Derivation: Let a derivation be: α1⇒G α2⇒G · · · ⇒G αn,
then it can be written as α1⇒∗G αn

In a derivation β Aγ ⇒G βαγ, the symbol A can be always
substitued by α, if there is production like A→ α, irrespective of
presence of substrings β and α around the non-terminal sysmbol A.
Language having this property is called context-free. The substrings
β and α are clled context of variable A.
The relation ⇒ is reflexice, anti-symmetric, and transitive, hence it
is an partial ordering relation.
Language acceptability using CFG: L = L(G) = {w ∈ Σ|S ⇒∗G w}
Two grammars G1,G2 are equal if the languages generated by them
are same. G1 ≡ G1⇒ L(G1)≡ L(G2)

kr chowdhary TOC 5/ 9

Derivations

Example: Given grammar G = {V ,Σ,S ,P}, Σ = {+,−,∗,/,(,), id},
V = {E}, S = E , and P = {E → E + E |E −E |E/E |E ∗E |(E)|id}, find
out the derivation and derivation tree for id ∗ (id + id)− id .
The generating process is shown below using derivation as well as
through syntax or derivation tree. The computation follows after the
derivation is complete.

E ⇒ E −E ⇒ E ∗E −E

⇒ id ∗E/E −E ⇒ id ∗ (E)/E −E

⇒ id ∗ (E + E)/E −E ⇒ id ∗ (id + E)/E −E

⇒ id ∗ (id + id)/E −E

⇒ id ∗ (id + id)/id −E

⇒ id ∗ (id + id)/id − id

kr chowdhary TOC 6/ 9

Derivations and ambiguity

Compilers use derivation (syntax) trees to derive a given expression.
If it succeed to derive give expression uisng the syntx rules, then the
expression is syntatically correct, else wrong.

During the derivation, e.g., S ⇒ ABC , we may start by first
replacing left hand variables first (left hand dervation) or the right
hand variable first (right hand derivation). In both the cases the end
result is going to be the same. Only, the order of application of rules
differ.

If a langauge L = (G)′s expression can be derived using two or more
different derivation trees, then the correspondig grammar G is called
ambiguous grammar.

If a grammar has maximum n number of derivation trees, then the
degree of ambiguity for this language as well as grammar is n.

It is recursively unsolvable, whether an arbitrary grammar is
ambiguous. Hence, there does not exist an algorithm to find out
whether a given grammar is ambiguous.

A grammar is unambiguos if every w ∈ L(G) has a uique parse-tree,

A grammar is called reduced, if, every nonterminal appears in some
derivation.

kr chowdhary TOC 7/ 9

Ambiguity

Show that grammar for id + id ∗ id is ambiguous.

The two derivation trees have different semantics: first calculates
id+(id*id) while the second does it (id+id)*id, hence the grammar
is ambiguous.

kr chowdhary TOC 8/ 9

Removing ambiguity

The general case of detection of ambiguity in a grammar is
unsolvable. However, if it is found that the grammar is ambiguous,
it can be made unambiguous by adding few more non-terminals in
the grammar.

Example: Given Σ = {(,),+,∗, id}, P = {E → E + E |E ∗E |(E)|id},
which is an ambiguous grammar, find out its equivalent
unambiguous grammar.

Solution: Let V = {E ,T ,F}, and
P = {E → T ,T → F ,F → id ,E → E + T ,T → T ∗F ,F → (E)}.
Note that, you can derive a string is one way only.

E ⇒ E + T

⇒ T + T

⇒ F + T ⇒ id + T

⇒ id + T ∗F ⇒ id + F ∗F

⇒ id + id ∗F ⇒ id + id ∗ id

kr chowdhary TOC 9/ 9

