
Context-free Languages and Grammars

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Former Professor & Head, Department of Computer Sc. & Engineering
MBM Engineering College, Jodhpur

Saturday 30th January, 2021

kr chowdhary TOC 1/ 9



Introduction

CFLs and CFGs are fundamentals to computer science, because they
help in describing the structure of programming languages. All the
HLL are in the category of CFL. Though natural languages (NLs)
are not CFL, but their analysis is possible only when they are treated
as CFLs.

Context-free languages(CFL) are more powerful than regular
languages. The context-free grammars (CFG) are generators of CFL.
Regular languages are subset of CFL.

CFG is finite specification of rules to generate infinite context-free
language.

To generate all the strings of regex a∗(b∗+ c∗)b, we follow the
steps:

1 write character a zero or more times
2 arbitrarily choose b or c and write it arbitrary times
3 write b.

kr chowdhary TOC 2/ 9



Generating Language strings

Let L= L (a∗(b∗+ c∗)b) is
language corresponding to
regex. We can generate all the
strings by substitution rules:

1. S → AMb, 6. B → ε

2. A→ aA, 7. B → bB

3. A→ ε, 8. C → cC

4. M → B, 9. C → ε

5. M → C

Consider generating w = aaccb

using production rules.

S ⇒ AMb ;by rule 1

⇒ aAMb ;by rule 2

⇒ aaAMb ;by rule 2

⇒ aaMb ;by rule 3

⇒ aaCb ;by rule 5

⇒ aacCb ;by rule 8

⇒ aaccCb ;by rule 8

⇒ aaccb ;by rule 9

Therefore, aaccb ∈ L. Symbol “→”
stand for “can be substituted by”,
and “⇒” stand for “derives.”
Strings like aacCb or AMb, during
the derivation are called sentential

form.

kr chowdhary TOC 3/ 9



Generating language strings

Let us try to generate the strings of
language L= {anbn|n ≥ 0}. The
rules this time are: S → aSb,
S → ε. Consider deriving
w = aaabbb.

S ⇒ aSb

⇒ aaSbb

⇒ aaaSbbb

⇒ aaabbb

Therefore, S ⇒∗ aaabbb. The
generator of these languages, is
CFG G = (V ,Σ,S ,P), where:

V is finite set of variables

symbols, appearing in the
process of derivation

Σ is set of terminal symbols
(appearing in the final
generated sentence),
V ∩Σ= φ ,

S is start symbol,

P is set of production/
substitution rules of the form
A→ α, where A ∈ V and
α ∈ (V ∪Σ)∗.

Symbols in upper case in the
beginning of English alphabets
are variables (non-terminal
symbols), i.e. A,B,C ,D,E .

kr chowdhary TOC 4/ 9



Derivations

Definition

Context-free grammar: A CFG is regular grammar if productions are
like: A→ a,A→ aB,A→ ε, where, a ∈ Σ, and A,B ∈ V . For the regular
expression a∗(b∗+ c∗)b, a CFG was used in the previous slides to
generate the regular language.

Definition

Derivation: A derivation α1 ⇒G α2 ⇒G · · · ⇒G αn, can be written in
short as α1 ⇒

∗
G

αn. In a derivation: βAγ ⇒G β αγ, the symbol A can be
substituted by α, if there is production like A→ α, irrespective of
presence of substrings β and γ around the non-terminal symbol A.
Languages having this property are called context-free. The substrings β
and γ are called context of variable A. Relation ⇒ is reflexive,
anti-symmetric, and transitive (a partial ordering) relation.

Definition

Language acceptability: L= L(G) = {w ∈ Σ∗|S ⇒∗
G
w}. Two

grammars are equal if they generate the same language.

kr chowdhary TOC 5/ 9



Derivations

Example

Given grammar G = {V ,Σ,S ,P}, Σ = {+,−,∗,/,(,), id}, V = {E},
S = E , and P = {E → E +E | E −E | E/E | E ∗E | (E ) | id}, find out the
derivation and derivation tree for id ∗ (id+ id)/id− id .

Solution

The generating process:

E ⇒ E −E ⇒ E ∗E −E

⇒ id ∗E/E −E ⇒ id ∗ (E )/E −E

⇒ id ∗ (E +E )/E −E ⇒ id∗

(id+E )/E −E

⇒ id ∗ (id+ id)/E −E

⇒ id ∗ (id+ id)/id−E

⇒ id ∗ (id+ id)/id− id

kr chowdhary TOC 6/ 9



Derivations and ambiguity

Compilers derive a given
expression, if it succeed, the
expression is syntactically
correct, else not.

In a derivation, e.g.,
S ⇒ ABC , we may start by
first replacing left side
variables (leftmost derivation)
or the right side variable first
(rightmost derivation). In
both, the end result is the
same.

If a language L= L(G) can be
derived using two or more
different derivation trees, the
grammar G is ambiguous

grammar.

If G has maximum n number
of derivation trees, then its
degree of ambiguity n.

It is recursively unsolvable, to
find out if an arbitrary
grammar is ambiguous. Thus,
there does not exist an
algorithm to find out if a given
grammar is ambiguous.

A grammar is un-ambiguous if
every w ∈ L(G) has a unique
parse-tree. A grammar is
called reduced, if every
non-terminal appears in some
derivation.

kr chowdhary TOC 7/ 9



Ambiguity

Show that grammar for id+ id ∗ id is ambiguous.

The two derivation trees have different semantics: first calculates
id+(id ∗ id) while the second does (id+ id)∗ id , hence the grammar
is ambiguous.

kr chowdhary TOC 8/ 9



Removing ambiguity

The general case of detection of ambiguity in a grammar is unsolvable.
However, if it is found that the grammar is ambiguous, it can be made
unambiguous by adding few more non-terminals in the grammar.

Example

Given Σ = {(,),+,∗, id}, P = {E → E +E |E ∗E |(E )|id}, which is an
ambiguous grammar, find out its equivalent unambiguous grammar.

Solution

Let V = {E ,T ,F}, and
P = {E → E +T ,E → T ,T → T ∗F ,T → F ,F → (E ),F → id}. Note
that, you can derive a string in one way only.

E ⇒ E +T

⇒ T +T

⇒ F +T ⇒ id+T

⇒ id+T ∗F ⇒ id +F ∗F

⇒ id+ id ∗F ⇒ id + id ∗ id

kr chowdhary TOC 9/ 9


