Course Title	Theory of Computation	Course No.	CS222
Department	Computer Science and Engineering	L-T-P [C]	3-0-0 [3]
Offered for	B. Tech. CSE	Туре	Compulsory
Pre-requisite	CS112	To take effect from	July 2015

Objectives		Learning Outcomes		
1.	To learn about languages, grammars,	1. To be able to distinguish between		
	and computation models	computable and un-computable problems		
2.	To learn about computability	2. To be able to distinguish between tractable		
3.	To learn about computational	and intractable problems		
	complexity	_		

Contents

- 1. *Finite Automata and Regular Languages:* DFA, NFA, Regular expressions, Equivalence of DFA and NFA, Closure properties of Regular Languages, Regular Pumping lemma, Myhill-Nerode theorem and State minimization
- 2. Push-Down Automata and Context Free Languages: Designing CFGs, Ambiguity, Chomsky Normal Form, Closure properties, CF Pumping Lemma
- 3. *Computability:* Turing Machines, Church-Turing Thesis, Variants of Turing machines, non-determinism, enumerators, Decidability, Halting problem, Reducibility, Rice's theorem, Undecidability, Godel's incompleteness theorem
- 4. *Computational Complexity:* The classes P and NP, Boolean circuits, NP Completeness (example problems: SAT)

Reference Books

- 1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, *Introduction to Automata Theory, Languages, and Computation*, Pearson, 2007
- 2. Michael Sipser, Introduction to the Theory of Computation, Cengage Learning, 2013
- Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation , Prentice Hall, 1997
- 4. Dexter C. Kozen, Theory of Computation, Springer, 2006.