TOC-IV Sem CSE, 1st Mid term examination

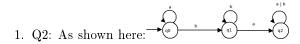
Solution Hints

March 27, 2019

Part A: Attempt All questions

- 1. 1A: True. This is because, in NFA for a single symbol there can be multiple transitions, hence for a same string there can be multiple paths. Each such path is like a DFA solving it.
- 2. 1B: Answer: Regular expression
- 3. 1C: Answer: To recognize tokens, as lexical analyzer in compiler, to recognize string patterns.
- 4. 1D: Answer: {a, ab, abb, abbb, ...}
- 5. 1E: Answer: True, as they generate the same language.
- 6. 1F: Answer: 2.
- 7. 1G: Answer: True
- 8. 1H: Answer: Exchange the final and non-final states.
- 9. 1I: Answer: False
- 10. 1J: Answer: 256

Part B: Attempt Any two questions



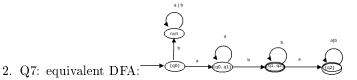
2. Q2: As shown Table here:

	state	Input (a)	Input (b)
	q_0	q_0	q_1
•	q_1	q_2	q_1
	q_2	q_2	q_2

- 3. Q3: (a) a(b+c+d)
- 4. Q3:(b) a(b+c) + b(b+c)
- 5. Q3:(c) ab*
- 6. Q4: Assume that length of string is longer than number of states. Hence, there is a loop, for part of string a^k and k>=1. Hence, $\delta^*(q_0, a^{n-k}b^n)$ leads to accept state. In addition, the string passing through the loop is accepted at state $\delta^*(q_0, a^nb^n)$. Since this machine accepts two different languages, hence it is not an automata.
- 7. Q4: The other approach for this question is as follows: Let us assume that two strings a^k and a^m are indistinguishable. That is, they lead the FA from q_0 to same state $(a^k \approx a^m)$ for $m \neq k$. Now, we supply string a^m which makes each string as $a^k a^m$ and $a^m a^m$. We note that $a^k a^m \neq a^m a^m$. That is, these states are distinguishable. Such states can be infinitely large (for every value of k). Since the automata has infintley large number of states, it is not a FA.
- 8. Q5: Answer shall comprise, a physical model of Moore machine, two tapes (one input and other output), the meaning of the tuples in $(Q, \Sigma, \delta, q_0, \Gamma, \lambda)$, and an example of transition diagram to demonstrate the generation of an output string for a given input string.

Part C: Attempt Any two questions

1. Q6: Pumping lemma is used to show if a given language is non-regular. It is useful only for infinite languages. It cannot tell, if a given language is regular. To test the non-regularity of a language, we breakup the given string of the language as $w=xy^kz$, with $k\geq 0,\ y\geq 1$. Then for some value of $k\geq 0$ we should be able to show that $w\notin L$, that is, it does not belong to the language. For the given language $\{a,aaaa,\ldots\}$ the proof is as follows. Let w, the input follows the square law, i.e. $|w|=n^2$, and $|y|=m\geq 1$, for m,n. Hence, $|w|=|xz|+|y|=n^2=n^2-m+m$. Let k=2, hence, $|xy^2z|=|xz|+|y^2|=(n^2-m)+2m=n^2+m\leq n^2+n$, as m can be maximum n. Hence, $|w|=n^2\leq n^2+n$. The next perfect square is $n^2+2n+1=(n+1)^2$. So, $n^2\leq n^2+n<1$. Since w falls between two perfect squares, the w is not always square. This goes against our assumption that it is a perfect square. Hence, as per the pumping lemma, the language is not regular.



3. Q8: The answer shall comprise, diagram of FA, mathematical model $(Q, \Sigma, \delta, q_0, F)$ and their definition. Apart from this, the working and language recognition process needs to be described.