Turing Machines Extensions

KR Chowdhary Professor & Head Email: kr.chowdhary@ieee.org

Department of Computer Science and Engineering MBM Engineering College, Jodhpur

October 6, 2010

Introduction

Ways to Extend Turing Machines

Many variations have been proposed:

- Allow two-way infinite tape
- Allow multiple tapes
- Allow Multiple heads
- Allow two dimensional TM
- Allow a multidimensional tape
- Allow non-determinism
- Allow combinations of the above
- Theorem: The operations of a TM allowing some or all the above extensions can be simulated by a standard TM.The extensions do not give us machines more powerful than the TM.
- The extensions are helpful in designing machines to solve particular problems.

Multiple Track or multi-Tape TM

- Extensions to TM add no computation power to it:
- Two tapes, each with its own read-write head
 - In each step, TM reads symbols scanned by all heads, depending on those and current state, each head writes, moves R, L, and control unit enter new state.
 - Actions of heads are independent of each other
 - Solution Tape position in two tracks: [x, y], x in first track, and y in second. δ is given by:

 $\delta(q_i, [x, y]) = (q_j, [z, w], d, d), \ d \in \{L, R\}$

δ	a,a	#, a	<i>a</i> ,#	#, #
q_0	q_1, a, b, L, R	$q_2, b, \#, L, L$	$q_0, b, \#, L, R,$	

• Example: Copying string from one tape to another tape?

Introduction

Multiple Track or multi-Tape TM

for multitape: k number of tapes $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$ $\delta(q_i, a_1, \dots, a_k) = (q_j, (b_1, \dots, b_k), (d_1, \dots, d_k))$

Multiple Track or multiTape TM

How can a standard TM simulate a three-tape TM?

- Interleave contents of two tapes onto a single tape.
 01010# Tape 1, red color is head position
 aaa# Tape 2
 - *ba*# Tape 3
- Tape contents on simulated standard TM, * is separator: 01010 * aaa * ba# Single Tape contents
- In practice, S leaves an extra blank before each symbol to record position of read-write heads

Simulate Multiple Track on standard TM

How can a standard TM simulate a three-tape TM?...

- S reads the symbols under the virtual heads (L to R).
- Then S makes a second pass to update the tapes according to the way the M's transition function dictates.
- If, at any point S moves one of the virtual heads to the right of *, it implies that head moved to unread blank portion of that tape. So S writes a blank symbol in the right most of that tape. Then continues to simulate.

 \Rightarrow control will need a lot more states.

Multitape Turing Machine = Single tape TM

Theorem

A language is accepted by a two tape TM if and only if it is accepted by a standard TM.

Proof.

- Part 1:If L is accepted by standard TM then it is accepted by two tape TM also(simply ignore 2nd tape), i.e.,[a,#].
 Part 2:
- let M = (Q,Σ,Γ,δ,q₀,H) be two track. Find one track equivalent?
- Create ordered pair [x, y] on single tape machine M'.

•
$$M' = (Q, \Sigma \times \{\#\}, \Gamma \times \Gamma, \delta', q_0, F)$$
 with δ' as $\delta'(q_i, [x, y]) = \delta(q_i, [x, y]).$

Nondeterministic TM

- Has finite number of choices of moves; components are same as standard TM; may have > 1 move with same input (Q×Σ). Nondeterminism is like FA and PDA.
- Example: Find if a graph has a connected subgraph of k nodes (no efficient algorithm exists).Non-exhaustive based solution is Guess & check.
 - NDTM: Arbitrarily choose a move when more than one possibility exists for $\delta(q_i, a)$.
 - Accept the input if there is at least one computation that leads to accepting state (however, the converse is irrelevant).
- To find a NDTM for ww input, w ∈ Σ*, you need to guess the mid point. A NDTM may specify any number of transitions for a given configuration, i.e.
 δ : (Q − H) × Γ → subset of Q × Γ × {L, R}

kr chowdharv

- Example: w = ucv, where *c* is preceded by or followed by *ab*
- Approach: Read input a, b, c and write a, b, c respectively, and move R in each, at start state. Then with input c, Nondeterministically decide c, a, b by moving R in three states transitions or decide c, b, a by moving L in three other states transitions (i.e., abc)

Transformation of NDTM to Standard TM

- A NDTM produces multiple computations for a single string. We show that multiple computations m₁,..., m_i,..., m_k for a single input string can be sequentially generated and applied.
- These computations can be systematically produced by adding the alternative transitions for each $Q \times \Sigma$ pair. Each m_i has number of transitions 1 - n. If $\delta(q_i, x) = 0$, the TM halts.
- Using the ability to sequentially produce the computations, a NDTM M can be simulated by a 3-tape TM M['].

Transformation of NDTM to Standard TM

Every nondeterministic TM has an equivalent 3-tape Turing machine, which, in turn, has an equivalent 1-tape Turing machine.

Simulation of a NDTM by 3-tape TM

- Tape-1 stores the input string, tape-2 simulates the tape of *M*, and tape-3 holds sequence $m_1, \ldots, m_i, \ldots, m_k$ to guide the simulation.
- Computation of M' consists following:
 - A sequence of inputs $m_1, \ldots, m_i, \ldots, m_k$, where each i = 1, n is written on tape-3.
 - Input string is copied on tape-2.
 - Computation of *M* defined by sequence on tape-3 is simulated on tape-2.
 - If simulation halts prier to executing k transitions, computations of M' halts and accepts input, else
 - The Next sequence is generated on tape-3 and computation continues on tape-2.

Two-way infinite tape

• There is single tape which extends from $-\infty$ to $+\infty$. One R-W head, $M = (Q, \Sigma, \delta, q_0, F)$

 \ldots -3 -2 -1 0 1 2 3 \ldots , is square sequence on TM, with R-W head at 0

This can be simulated by a two-track TM:

•
$$M' = (Q' \cup \{q_s, q_t\}) \times \{U, D\}$$
, where U = up tape head,
D = down tape head, $\Sigma' = \Sigma, \Gamma' = \Gamma \cup \{\#\}$, and
 $E' = \{[q; U] \mid [q; D] \mid q; \in E\}$ Initial state of M' is pair

 $r = \{[q_i, U], [q_i, D] | q_i \in F\}$. Initial state of M is pair $[q_s, D]$. A transition from this writes # in U track at left most position. Transition from $[q_t, D]$ returns the tape head to its original position to begin simulation of M.

Multi-Dimensional Tape:

- Single R-W head, but multiple tapes exists. Let the Dimensions be 2D. For each input symbol and state, this writes a symbols at current head position, moves to a new state, and R-W head moves to left or right or up or down.
 Simulate it on 2-tape TM:
- copy each row of 2-D tape on 2nd tape of 2-tape TM. When 2D TM moves head L or R, move the head on 2nd-tape of two-tape also L or R. When 2D head moves up, 2nd tape of two-tape scans left until it finds *. As it scans, it writes the symbols on tape-1. Then scans and puts remaining symbols on tape-1. Now it simulates this row (on tape-1).