A Turing Machine Simulator

M. W, Cunris

Wesleyan Unfversity, Middletoun, Conmeclicul

Absiract. A deseription of & Turing machine simulator, programmed on the IBM 1020,
is given. As in the papers by Wang and Lee, Turing machines are represented as programs
for 4« computer. Allowanee has been made for the usage of subroutines in the programming
janguage. Also included arc some remarks about writing a Universal Turing Machine ro-
gram and some experimental evidence that the state-symbol produet ig not the only meas-
ure of complexity of a Turing machine.

1. I'ntroduction

Many authors [1-4] have noted that Turing machines [5-6], and finite sutom-
ata 18] and {2 may be represented by programs writlen for a computer that is
cquipped with a potentially infinite tape and a read-write head. The instruction
st from which these programs ave construcled consists of operations of two
types. The first type are operations on the tape and the second are program eon-
irol operations. There are no instructions that allow for program modifications
during execution time.

In writing complicated programs for any computer it is desirable and often
necessary t0 bave an actual computer to check (debug) them on. This is true
for programmed Turing machines. Tor this purpose we have designed such a
Turing machine and programmed a simulation for it on the IBM 1620. This work
wag carricd out with two particular projects in mind: (1) as an educational
device for a digital analysis course at Wesleyan University in which the students
had to design a Universal Turing machine; and (2) as a tool for a research pro-
ject at Wesleyan University directed toward the study of Turing machines and
finite automuta.

2. The Programuned Turing Mochine

As ariginally conceived by Turing [6), this abstract computer is cquipped with
a potentially one-way infinite tape which is divided up into squares. It performs
its caleulations on this tape by writing characters in the squares, and being able
at any time to make decisions based on the finite number of characters (tape
vontent) already written on the tape. The read-wrile head scans one character
ab a time.

"Translating this general ides, of a computer into a specific form we now specify
(1) the set of characters which may be written on the tape, (2) the program-
ming language that it can interpret, and (3) eonventions for using the tape.

1. The Charocier Set.  The character set chosen was determined by program-
ming and hardware considerations of the 1620 computer which was used in the
simulation. However it should also be convenient for other compuiers since it

1

Joumal of the Association for Computing Machinery, Vol. 12, No. 1 Uanuary, 1985), pp. 1-13



=z AL W, CURTIS

conforine (o Lhe Fortray chavacter set, It consigts of: all eapliad Latin letter
A-7s the decimal digiis 0,1, 2, 8,45, 6,7, 8, 05 %, 8, @, + and —. The left anc
right parentheses and the comma are not in the character set. The character, B
= veserved to denote a “blank” square on the tape.

2o The Progranoang Languoge.  This language cousists ol o cerlain basic sef
ol structions that are written down in a speeifled format. A program is a4 so
guence of these basic nstructions, The instruetion formeat was chosen for its
readability and similavity to other symbolic programmivg systems on actual
computers. The basie instructions are sheht modilications of those proposed by

Wang [1].

By ¢ Shift the read-write head A squares to the right on the tape where A s an intege
0= N <1060,

LY o Shift N squaves to the lefr, 0 £ N < 100.

By o Write 2 on the secanned square, where o 1s an element of the character sct.

P, 2y Conditional transfer; it the scanned character is o, transfer control to the in-
struciion whose name {(symbolie address, see below) is «; otherwise go to the
next instruction in sequence.

Py Unconditional transfer to iustruction at address «.

Our simulator will accept any symbolic address, «, consistng of 24 of the
alphamerie characters available on the 1620. A symbolic address may be the
name of only one struction of a program, but only those instructions referred
to i a iransfer ustruction need have symbolic addresses. In writing a program
for a Turing machine, the insiructions are listed i sequence and executed in
sequential order except as changed by the transter instructions. The symbolic
address is written to the left of the instruetion designated.

END @ Signifies the end of the program and causes the tape content to he printed out on
the 1620 typewriter.

An essential departure from {1] and [3] is the inclusion in the programming
language of an instruction similar to the execute instruetion m IPL-5 and the
CALL statsment 1n Fortray. Ttg usage is explained in detail in Section 3. Its
format 18:

NAME(4,, 42, -0, 4 0 Where the A; are symbolie insvruction addresses or chav-

acters of the Turing machine and NAME is the symbolie
address of the first Instruction of the subroutine,

3. Tape Conventions.  In the simulator, the Turing machine tape congists of
a fimile string of digits in the 1620 core storage, 2 digits per tape square. The
simulator initializes the tape by marking B’s (blanks) in each square. Then the
programmer’s intitial tape conteut (Le. the data for his program) is read in
starting st the loft end of the tape. When control is passed to the Turing ma-
chine program, the leftmost squate s scanned first. Thus, the simulator provides
a tape extending to the right, However the programiner may use multiple tapes,
or & Lwo-way open tape by marking off the tape in sections and programming
aceordingly, Note that B's are read in as part of the data.



Wi

A TURING MACHINE SIMULATOR

A sainple program for the Turing machine given in Wicene [3, p. 364] 18 shown
below. Tlus mackive prints a 1 on the frst blank gquare at or Lo the vight of the
seanned squave.

S; mf’j :}c Instructime
LOCY T(L.OG2, B)
Rl
TEOCH
TOC W(1)
END
Suppose the nitial tape appears as follows:  Faw - 2B - where the bar
indicates the scunued character and the o's are nonblank characters. Then the

inal tape would be: @ -zl -0

Note. This prograun will work for a machine with an arbibrary character sct
containing 1 and B, The above lnstruction set is nob & minimal one for writing
prograing representing Turing jnachines (see [1]) bub was made as flexible as
possible while still retaining the essential features of a Turing machine. Ta con-
sideration of exvcution speed and program efficiency the flexibility of the trans-
fer instructions is useful,

1t is shown in [2] and [3], that onc may also represent finite antemata with
prograns on this computer with the restriction that one does not use the loft-
shift command.

3. Subroutines

Both Turing 6] and Wang [1] uge subroutines with variables as arguments
(ealled skelelal tobles by Turing) in their developments, but mainly as a con-
venient short-hand notation for their exposition, Tt was understood that in the
actual machine these skeleton tables were copled down where they appeared
with fixed arguments replacing the variables. We have tried to follow the more
usual concept of subroutine as it appears iu actual computer techinology whore
the subroutine is a subprogram transferved to or exceuted from the main pro-
gram, The argurents are supplied to the subroutine by the execute instruction
of the main program and they are substituted for the variables appearing in the
subroutine. The order of substitution is governed by an expression of the form,
NAME(er;, @z, -+, o), where the a: denote the symbolie addresses and char-
acters which play the role of variables in the subroutine. An expression of this
type must precede cach subroutine.

Two examples of subroutines equivalent to the skeletal programs in "Turing
i6, pp. 236-7] are given below. These subroutines will work on any tape format
provided that the left end of the tape is marked by an “TI7 on the first two
squares. The variables in the following subroutine definitions are LOCI, LOC2
and A. Note that we use the same notation for variables as for arguments. The
distinetion is made by the first expression of the subrouvine which designates
them ag variables.



1 LW, CURTIS

Frugrau Comwient
Lrample !
SUBL{LOCLLOU2,A) This subroutine finds the firsl. A on the tapo
U] TEED and goes to LOOT I no A exisbs, it goes to
11 LOCE. “
TRUBL)
21 TULOCEA)
TE5 1)
11
T{=1)
=3 i
TLaC2 B
TS
END
Faaniple 2
SURB2{LOCTLOC2,CY This subroutine erages first C and goes to
SUB2 SUBLRLLOC2,C) LOCIL. Tf there 18 no C, it goos back {o
=i Wb} INCIR
TLOCL
END
Franple 3
SUB3TLOCED) Frase all I's on the tape and go to LOCI,
={UB3 SUB2(RULE,LOCLD)
END

Although Turing’s subroutine in Fxample 3 is quite clegant in its definition
=3 £ I 1 & 3
a more cfficient routine that would not need 1o proceed to the beginning of the
tape alter each erasure could be written as follows:

Euample 4
SUB3LOCLAY

SUN3 SUBRIRLLLOCLA)

=1 Wi{B}

¥ 1l

S ES T{81L,A)
TEZ B
TED

=2 Rl
TSLA)
TEOCHE)
TSR3
END

Tnn both Examples 1 and 4 we could have incorporated another subroutine that
would search vight for the fivst A, or if no A, it would go to LOCL.

4. The Simmulalor
Tn this scetion we dizouss some aof the essential fealures of the 1620 program
that interprets the Turing machine programming language deseribed above.
The simulator program can be broken down into four blocks, explained below,



A TURING MACHINE SIMULANTOR 3]

i. Poss 1 of the looder.  This block scis up symbol tables for Lhe symbolic
addresses in the subrouiimes and the main program.

2, Pogs 2 of the loader. "Fhe Turing program is coded and loaded into con-
seentive digit positions of core memory with record marks separating mstroe-
tions and symbolic addresses replaced by the actual core addresses of instrug-
tions.

3. Loading the computationai {ape.  The conseeutive digit positions in memory
that serve as squares on the tape (2 digils per square) are marked with B's; and
then the user's nitial tape conlent is read in.

4. [nterpretive mode.  With the exception of the exccule subroutine eommand
the instructions are very easy to interpret. The core address of the scanned char
acler and the current instruction address are the most imporiant things Lo keep
track of. A shift instruction of N squares only requires that we add £2N {o the
gcanned character address. To interpret a write ingtruction, we need to transfer
the coded form of the character in the write instruction to the contents of the
geanned characler address. To exceute a transfer, we replace the current in-
struction address wilh the instruction address in the transfer instruction.

The subroulines are inlerpreted by the same part of the simulator as the main
program, where the argumentls are referred to using the indirect addressing
feature of the 1620, This feature ullows wny level of indirect addressing so the
nesting of subroutines along with their arguments poses no special problems. We
keep track of the instruction addresses of the execute instruetions by storing
thern in push-down storage lists.

If we now consider the speed of the Turing machine instructions as interpreted
by the simulater we can say that each type of instruction takes a certain fixed
amount of time (roughly speaking) to execute with the exception of the execute
subroutine instruction where the execution time is a function of the number of
arguments. The important thing te nofice is that the shift ingtructions take a
fixed amouut of time and do not depend on the aumber of squarces to be shifted.

5. The Undversal Machine

For the definition of a Universal Turing Machine, U, the reader is referred to
{6]. Eesentially, the idea is to write the program, P, of any machine on U's fape
and have U interpret the instruetions of P. The design of a Universal Turing
machine, U, is determined by the cncoding scheme that is chosen to represent
the “special-purpose machine,” P, and its computation on T's tape. Thus, the
problem of designing a Universal Machine is that of simulating a class of Turing
computers on a single computer or interpreting the programming language of one
computer on another,

Given the Turing machine language as deseribed above, it is natural to try to
design a universal machine by simulating a modified version of the language,
discarding the noncssontial parts of the notation. To simplify matters we re-
striet our attention to special-purpose machines that have the character sct



6 AW, CURTES

MO, 1, B (see (713 We also restriet the language to shifts of only one sqnave at a
T,

Lo writing the program for U we will try to minimize the time that U bakes to
siterpred an arbitrary special-purpose program P, written in the modified pro
gramming language.

Tt g helieved that time as well as the state-symbol produet is a faector in the
measure of the romplexity and cfficieney of total computation of 2 Turtng ma-
¢hine, Research into thiz guestion i envrently heing econducted at Wesloyan
using the simulaior deseribed here.

At this potut interested readers mighl care to go to the Appendix for a de-

tailed explanation of such a Universal machine. We will continue here with a
geperal discussion of techniques in designing an encoding secheme o vepresent I
that will save time 1 U's execution.

Because U's view of ils own lape 8 one-dimensgional, much of ils line 1s spent
in shifting loops which look for special marks. The most {ime spent in these
SL ifting {oops i8 in two parts of U’s program.

{13 The part that shifts from an instruction in P o the seanuned characier
in P's computational part of the tape.

{2y The part that searches for the next insbruction of 12,

One can minimize the time in (1) hy marking the current instruction and P’s
scanned character by a single mark and then shift directly to that mark. This
mvolves no cepying and subscquent trial and errar searching which is very
cosily.

Let us now consider the timing involved in (2), Let machine U consider the next
instruction of I’ to be immediately to the right of the eurrent instruction unless
that instruction is o transfer. This eliminates much of the offort gpent. in searching
for the next instruction which oecurs in Tunng’s formulation, for exampls. In
order to speed up the interpretation of the {ransfer instruction, we modily the
language of P as follows. We mark each addressable instruction of P's program
will the same mark. The transfer instruction, T{F), now means “transfer to the
kih addressable instruction.”” We vepresent F on 1% tape in stroke notation
{i.e. & string of & consecutive L's).

The interpretation of T4 involves shiftimg back and {orth to locate the kth
addressable nstruction. The time required by U to interpret T(8) is determined
ag follows: Let

{7 = the time it takes to shift from the location of T(k) on Us tape to the
heginning of U's {ape;

{'; = the time i takes to shift from the location of the ¢th addressable n-
struction of T to the beginning of U's tape;
t: = the nominal time to execute 7(4).
Then,

Lom 00 A4 ), b= 2000 O R 30+

]
R

and in general,



A TURING MACHINE SIMULATOR 7

I3
L=+ Cot 3}_)1 {0+ ). (1)
=

The nowinal thme gives a good approximation to the actual interpretation
pime. (We have neglected some inconsequential intermediate operations.)

In offect, Lec [3) vequires each instruction of P to be addvessable. Thus for
each insbruction T(k) in a program P with n instriuctions using the above
schene, a corresponding program P using Lee’s scheme would have the in-
striucetion T(J(:hi, wheren = k" 2 1 2 1 aud therefore reguive L = { . Hence a
Universal prograny, in our system, identical to Lee’s Universal program cxeept
for the method of interpreting transfers, would run faster on P than the Lec
machine would on P,

A altemate procedure that would result in even faster running time for many
programs s to allow for two transfer instruetions: transfer forward, TR(E),
and back TL(E), to the kth addressable instruction, when & is counted from the
current transfer instruction. The nominal tirne required for U to interpret TR(E),
denoted by £°, can be obtained from (1) by setting ¢ = 0 and substituting
(s — Clor O, where O & O % Cryy - We get,

G5 = O — O 4220 (Copy — O, (2

i=1

——r

Simifarly for TL{k) we get,
fe
b= C o Crpg + 22, (C = Crjpa). (3)
. i1

For some programs ¢, may be less than the equivalent ¢ where (' £ ¢ < (',
and k £ ¢, K = ¢ — L 4+ 1. By looking at formulas {1), (2) and (3) we have
the following:

Rewnark, Foragiven b and ¢, = ¢ =2 ¢, (1)if i £ 2k, then t.fl.k_;,,J < Uy
and () if ¢ < K, then i, < i .

We may now constriet a U that interprets three types of transfers T, TR and
TL. Using the results of the above remark we may conelude that any program
I will run at least as fast when coded using all three transfers than when eoded

using only 7 or only TR and T/,
g only 3

6. Some Fxperimenial Resulls

Three Universal Alachines in the literature {3, 6, 9] were programmed using
the Turing Machine Language deseribed above.

Turing’s Universal Machine was not translated directly into our language.
Instead we used his encoding scheme for ingtructions of P with the minor modi-
{ication that cuadruples replace his quintuples. We also adhere to his idea of
copying successive total configurations of P. Thus, our version of Turing’s
Universal Machine is not an exaet copy of his but does follow his mode of inter-
preting P. On the other hand, Lec’s Universal Machine Program was transeribed



8

M, W, CURTIS

directly, wstruction by instruction, wbo the Turing Machine Language, making

only the necessary changes dictuted by instruction format,

The transition table for the Watanabe Universal Machine, S-state X S-sym-
hol, was programrued 1o the following way: Let s stand for the 7th state and
¢; the jth charaeter. Then this would be represented by Watanabe as follows:

s * P
| ) J

i
ET o, Bor L, s,

i
i |
i ;

The corvesponding program for state s used in this paper is the following:

ST T, 6
TIC2, e2)

T, o)

CF o Wi
Rlort
T{EN)

(1} Turing

S0 w(l)
5 L owii)
s 0R
g 1 R
S5 0 stop
:"; 1w (GD

{3) Lee

1 TG
2 W)
3 Rl

1 T,
5 W

i1z, 1)

T Wi

5 R

g TE, 1
10 W)

ni

TABLE A

(2) Watanabe

i}

W), R, 8
W), R, &
W), L, &,

\
i
Sy j Wiy, R, %
S, § Wl L, 8
35 ’ W, R, 5,
|
(4) Wesloyan I (5} Weslevan Il
A TE O A TRE, O)
A W, AW
R1 Ii
T TL(2)
A W) A W)
R R
T, 1) T2, 1)
END Ny

(6) Wesleyan 11
A TR O
A W

i
(1)

A WO
1
TLE D
END




Epcoding Scheare |

1. Turing

2. Lee

3. Watansbe

. Wesleyan T

h. Wesleyan .Ui

6. Wesleyan :

111

Turing machiue

Bame as 1 except

A TURING MACHINT SIMULATOR

TABLE 1

} |

A ‘;Jsi'c

U S ._k; e

:

delanguage
seribed ahove

T(a), Tla, 0}

|
%
were not used !
|
i
|
|
|

1
!
| 2606 % Hid
f
E

106 | 127

_
s

Same as 1 51 ‘ 341
H
: Bame as 1 129 | 209
Same as 1 145 | 277
ae
 Bame a8 1 167 | 343

and (h)

4

S e N
SN0 8 quad- |18 | Any In- | 3
ruple \ | teger
J I
2L, WX, o9 12
Tl |
LR i ‘ I
SiXGY L S 3 2 . 8
quintuple ' ]
Bame as (2) plus | 16 3 P8
Ky, TS, 0 ;
2L, W) w3 s
TR, X), TRIK) ; ‘ |
TL(E, XY, TTKy | J
| The wsion of (4) | 16 ‘ 3 ‘ 3
\
| |

|
i

A == Instruction set for U.

B = Number of lnstructions for U with subroutines.

(' = Number of lostructions for U without subroutines.
D = Instruction set for P that 17 can interprot,

E = Cardinality of U’s character set,

F = Cardinality of character scb avalluble for P.

2 = Number of instructions or states for P.

* Sinee no provision is made for halting in the Watanabe formulation a do-nothing state

was added to “stop” the computation.
T/\BLL 2
Fueoding Schewme A B C ‘ Bxecution Tiime
|

Turing 445 ‘ 692,444 936 51 minutes

Lee 204 ‘ 15,118 207 2 minutes, 12 seconds
Watanabe 1129 : 36,719 28,303 38 minutes

Wesleyan 1 5l 1,680 84 40 seconds

Weslevau 11 54 1,453 84 l 39 seconuds

Wesleyan 1T1 52 1,403 76 36 seconds

= the numbu of tdp( squarcs used by U to execule P.
i = the number of tape squares shifted by U in exeeuting 7.
the number of symbols written and erased by U in exceuting P,

It

Our own versions of a Unlversal Turing Machine (Wesleyan I, 11, III) were
writter: Lo interpret the three types of transfers described in Section 5.

All six universal machines were tested using a special-purpose machine
that complements a binary tape and stops when it encounters two consecutive
zero’s on the input tape.

The machine P appears as shown in Table A in the various systems lested.
Within small variations, it Is Infuitively clear that these programs lor P are



Hy M. W. CURTIS

TABLE 3

Lncoting Schenin

Turing Bk = . 32k - 80k
Lee Sk LS 80K 4 120k + 30

Watanabe
Weslevan 1
Wesleyvan 1]
Wasloyan IT1

et B

“mninimal,” Le. the complementing task is a very simple one and these programs
de only what is essential. Comparative resutts are given in Tables 1-3.

In Table 2 the input tape was 0L100 and this tape i3 the minimal length tape
that requires all mstructions and afl table entries of P to be executed by each U.

1t is also important to note how much tape is required to encode an arbilrary
2-symbol, A-state machine P, for each Universal Maching menlioned above. We
have the following conservative bounds in Table 3: Let L equal the number of
souares of U's tape taken up by the program I, and & equal the number of states
for P

In interpreting the results in Tables 1-3, one should take the following facts
into consideration. The timing of the Universal Turing and Watanabe machines
s not a fawr representation of thelr capabilities as no atterpt was made to re-
write these as efficient programs. We simply translated Watanahe's machine as
stuted above, without taling advantage of features fn onur language, but in such
a way that the number of scuares shifted and the number of symbols written is
the same 2s 17 one had simulated the transition table divecty. The same upplies

to Lee's machine,

We recognize thal the execution time of o given U deponds on the program-
ming skill used in constructing U in a particular language. As we have said, the
Watanabe machine was penalized by the direct franslation into owr language
{(i.e. using his encoding scheme for P, we vould have prosrammed a more effi-
cient U, For this reason, we have included the data in columns A, B, €.)

For a given encoding scheme one tries to design U so that the number of
srjuares shifted and number of symboals written will be & mimimum foy avbitrary
P (rhiz may not be possiblel. Tt ig bebeved that the U's tested approach this
aim, even though the programming for U may nol be the most efficient time-
wise, (For example, many unessentisl instructions of the transfer type may be
executed. This most likely is the ease for the Watanabe program.)

If this is the case, then the data in eolumns A, 8 and < of Table 2 are evi-
deree e support of our remarks in Section 5 that the state-symbol product is
ot the ondy eriterion for measuring the complexity of a Turing Machine.

Achnowledgments.  The development of the Turing machine simulator was
carvied out at the Wesleyan Computer Laboratory under the suidance of Pro-
fessor B K. Blum and was partially supporcted by NSF Grant GP 1356, Special
thanks are due o Robert Travis for his alde assistance in programming the
simulator and to Professor Blum for hig advice and sugeestions in writing this



A TURING MACHINE sIMULATOR 11

paper. The idea for the different transfer schemes in [ program eame from
conversations with Robert Travis and Peter Tagen. Turing’s Universal Program
was programmed by Richard Currie.

REFERENCES

1. Wang, H. A wvarient to Turing’s theory of computing machines. J, ACM 4, 1 (Jan. 1037,
6392,
2. Lee, C. Y. Categorizing automata by W-muachine programs. J. ACH 8, 3 (July 19613,
384308,
—— Automata and finite automata, BSTJ 38, 3 (1960), 12671645,
Mixsky, M. L. Hecursive unsolvability of Post’s problem of ““T'ag” and other topics in
theory of Turing machine. J. Math. 74, 3 (Nov. 1961).
Kuewne, 8. Totroduciion to Melamathematics. Van Nostrand, New York, 1952,
. Tommvg, A M. On eomputable numbers with an application to the Bntscheidungs-
problem. Froc. Lond, Maih Soc. 2, 453 (10936), 230-205.
. Spaxwon, O, A universal Turing machine with two internal states. Tn Anutomate Studics,
Princeton 1. Press, 1956.
8. Ramiy, M. O,, anp Scotr, D, TFinite automats and their decision problems, JEM J
Res. Develop. 3 (1959), 114-125.
9. WartanaB®, 3. 3-symbol 8-state and 5-symol G-state Universal Turing Machines,
JoACM & 4 (Oct. 1962), 476-483.

APPENDIX. A Universal Turing Machine
We shall state the conventions for representing s special-purpose machino
on U’s tape. U's tape is divided up into two sections. The first section, U,
contains P’s program and the second, Us, is reserved for P’s computation, The
language for P is a ruodified version of that given in Section 3. It is as follows:

o

-

[=t

-1

4 o shift right one square
L o shadt left onc sguare
We 1 owrite o = 40, 1, B}

Th = « : T the scanmed character is «, transfer to the kth addressable instruction start.
ing at the beginning of the tape. kg writben in stroke notation.

TEk = «: U scanned character is a, tronsfer to the kth addressable instruction to the
right of the current instruction.

TLk = o 1f scanned character is o, transfer to the kth addressable instruction to the loft
of the current instruetion,

Subroutines are not provided for. The heginning of the tupe is marked by
/7777 Uy s separaled from Uy by @@@@4E@ . This convention makes shifting
back and forth from U, to Us faster. The instructions of P are interpreted in se-
quence until a transfer nstruction is encountered,

Instructions are written on consecutive squares, cach instruction separated
by w ¢,

Alternate squarcs in Uy are available for P's computation and the seanned
character on P’s ecomputational tape is marked by an “8” on the square to the
lett. To mark the eurrent instruction being interpreted, a “C’ is written over
the “.” to the left. Addressable instructions are marked by an “A” ou the square
to the right of the .. While interpreting transfer instructions “8 and ‘"
are used in the searching procedures.



12 M. W. CURTIS

A LUHIYERSAL TUR LG MACHI HE PROGRAM *® TEST TYPE OF TRANGFER TO INTEAFRIT
- SHET LI T RIUTINE TIFL L}
SUSRGUT TuF TITR1,P)
Trat b
SLT TUS1,.) 547(.)
L1 3 SRT{A}
TO5LT) P
51 £ S57f)
- FT RAGHT RLUTIHE Ga=iwy
SUSBTTING vy
ISR 1]
o it
! SOTL,
. {87 e
> TN RENIRYIHC OF TaPE HOUTINE “»-f(.h)
Sukp0aT L1
kX Wil)
Tish) L8 T MARKED JHETRUCTICY
17 wix}
IBT(LY
SRT{S)
HEXT SEQLINVIAL BSSIRLCTION ‘;in\)

1472)
£ MATCH LOCATIONS FOR TRAISFER ROUTI
TR1 R

153
T8
L R
(153
Fisz SLT(a}
SAREFIRST THSTRUGTION '2’:{»;25)
1
[Paki P IAL SCAINED SYHAOL I}*i - l}
5 31,
s el sirth ZREE
* §4iP OVER ADTRESHES bl
R vishy
$3 TisTA) TLsE W)
- Fsz) SLTE*)
R o wiay
* PRTEESREY n RIGYT SHIFT INSTRUCTION " !
€3 T(RS,R) i LS.
" VHTERRRET A LEFT  JHIFT [HSTRUCTION = 7S SECEION INTERPRETS TAE RIGHY SIST COM
TrLS, L) Bs CuSsisy
ke T 2 ARITE INSTRUCTION
" T oA TRANSFLE  INSTRUCTICH e
) T15%)
- RET A END o
T{EN, £ = TUIE SECTION INTEAPRETS THE LEFT  SRIFT (e
+ o JLLEGAL TNSTRUGTION QUIT L5 583050 b
THENDY i)
* GO0 TO NEXT 4NSTAUCTION w2
S5 SLV{E) WSy
sEnrid) 1085
isn) s e decTion 1 5 OTHE WAITE COMMAGHL
- TG RECTION INTERPRETS 1 TRANSFER 1RSTRUGTION i WpS SECTION DATERPREFS THE WRITE CORMAND
TR SHTCL Y TN, 1)
L2 Tiwze)
« TEST IF_STRAIGRT THANSFER SHSE[5)
TET1 = )
T i) STAAIGHT TRAKSFER 5;5)
& 1755}
w2z 5I5E(s)
Rl
YEo)
1(55)
Wl SHSS(S)
R1
“ fiy
* O OPOS.YIQN THE TAPE HEAD AT COMPUTATICHAL FART OF FAPE FOR EXIT
e
EX)T To Kexr pnstrucriow R0 JEETE)
T3 TEEND)
& ED
TL

Fig. 1

Tor the program (6) in Table A the initial tape reads:
7/ ARTIL = G.AWOR.TLAWLR.TLIL = 1. E@G@GE@@BIBIBIBOBIBEE - --

An intermediate tape content while interpreting the first and then the fifth in-



5]

A TURING MACHINT SIMULATOR 13

gtruction is:

///// ATRIS = 0.AWO.R.TL+WILR.TLlI = 1 E@@EE@S0BIBIBOBOBED - - -
FHATRIL = 0AWOR.TICAWEL R.TLU = L. E@E @@@S1B1B1BOROBED - -

The final tape content is:

/774 ATRIL = 0AWOR.TLAWLR YL = ICEG@@@@BIBOBIBIRIBBS -



