
A Turing Machine Simulator 

M. W. CU~TIS 

Wesleyan University, Middletown, Connecticut 

Abstracl. A descript ion of a Tur ing  machine s imulator ,  programmed on the IBM 1620, 
is given. As in the papers  by Wang and Lee, Turing machines are represented as programs 
for a computer .  Allowance has been made for the  usage of subroutines in the  programming 
language. Also included are some remarks about  writ ing a Universal  Tur ing  Machine Pro- 
gram and some exper imental  evidenee t ha t  the s ta te-symbol  product  is not  the only inca.s- 
ure of complexi ty  of a Tur ing  machine.  

1. Introduction 

Marly authors [1-4] have noted that  Turing machines [5-6], and finite autom- 
ata [81 and [2] may be represented by programs written for a computer that, is 
equipped with a potentially infinite tape and a read-write head. The instruction 
set from which these programs are constructed consists of operations of two 
types. The first type are operations on the tape and the second are program con- 
trol operations. There are no instructions that, allow for program modifications 
during execution time. 

In writing complicated programs for any computer it is desirable and often 
necessary to have an actual computer to check (debug) them on. This is true 
for programmed Turing machines. For this purpose we have designed such a 
Turing machine and programmed a simulation for it on the IBi\/[ 1620. This work 
was carried out with two particular projects in mind: (1) as an educational 
device for a digital analysis course at Wesleyan University i~t which the students 
had to design a Universal Turing machine; and (2) as a tool for a research pro- 
ject at Wesleyan University directed toward the study of Turing machines and 
finite automata. 

2. The Programmed Turing Machine 

As originMly conceived by Turing [6], this abstract computer is equipped with 
a potentially one-way infinite tape which is divided up into squares. I t  performs 
its calculations on this tape by writing characters in the squares, and being able 
at any time to make decisions based on the fi~lite number of characters (tape 
content) already written on the tape. The read-write head scans one character 
at a time. 

Translating this generM idea of a computer into a specific form we now specify 
(1) the set of characters which may be written on the tape, (2) the program- 
ruing language that  it can interpret, and (3) conventions for using the tape. 

1. The Character Set. The character set chosen was determined by program- 
ruing and hardware considerations of the 1620 computer which was used in the 
simulation. However it should also be convenient for other computers since it 

Journal of the Association for Computing Machinery, Vol. 12, No. 1 (January, 1965), pp. 1-13 



'.~ M.  \V. C U R T I S  

v,,~t'~wms to the t:Ol¢'r[<kX character  set. I t  co~tsists of: all capital  Laiin. ]elter~ 
A Z; the decimal digits 0, l, 2, 3, 4, 5, 6, 7, 8, 9 ; . ,  S, @, + and - ,  The  left. anc 
righi par<,~theses mid the comma are not i~ the eharaeier  set. The character ,  B 
is reserved to denote  ~ "bla~,l<" square o~, the tape. 

:2. 7'he? Progv'a,e,e/te~/ La*~tl~tagc. This la::guage eo::sists of a eertai:, basic sel 
of i~struetions t}~.at are writ ten dew** iz, a specified formal .  A program is a se- 
qlwl,(:e of these basic i~structions. The instruction format  was c'hosea for ils 
rcadabilit,v a~d similari ty to other symbolic programmiug systems on actual 
eompuiers .  The  basic instruclions are slight modifieatio~,s of those proposed by 
\Va~g [1]. 

ILV Shift the read-write h~,ad A squares to the right on the tape where A" is an intcge~ 
0 =< A < I{X). 

L.V Shift 5- squares to the left, 0 N A < 100. 
ll-!.:r) Write x on the se:~m~ed square, where x is an clement of the character set. 
Tin, .r) Conditional transfer; if the scammd character is z, transfer cent.rot to the in- 

struction whose ~mme (symbolic address, see below) is c,; otherwise go to the 
next instruction in sequence. 

T(~) Unconditional transfer to instruction at address a. 

Our s imulator  will accept rely symbolic address, el, consisting of 2-4 of the 
a lphameric  characters  available on the 1620. A symbolic address may  be the 
name of o~,ly one instruction of a program, but  only those instructions referred 
to it, a t ransfer  instruction ~leed have  symbolic addresses. In  writing a p rogram 
f e r n  Tur ing machine, the instructions are listed ill sequence and executed in 
sequc~,tial order except as chmiged by  the transfer  i~lstructions. The symbolic 
address is writte~t to the left of the it~struction designated. 

E N D  : Signifies the end of the program and causes the tape content to be printed out on 
the 1620 typewriter. 

All essential depar ture  from [1] and [3] is t, he irtclusim~ it~ the p rogramming  
language of an instruction similar to the execute instruction in IPL-5  attd the 
CALL s ta tement  i~ Foa~raax. I t s  usage is explai~ed it~ detail  in Section 3. It.s 

formai  is: 

NAME(A~, A ~ , . . .  , A~:) : Where the A~ are symbolic instruction addresses or char- 
aeters  of the Turing machine and N A M E  is the  s y m b o l i c  
address of the first instruction of the subroutine. 

3. Tape Conve%tion,s'. In the simulator,  the Turing machine tape consists of 
a ~niie string of digits in the 16220 core storage, 22 digits per tape square. The  
s imulator  initializes the tape by marking B's  (blanks) i~ each square. Then the 
p rogrammer ' s  intitiai {ape content  (i.e. the da ta  for his program) is read itt 
s tar t ing a t  the left e,~.d of the tape. When control is passed to the Turing ma- 
chicle program, the teftmost square is scanned first. Thtts, the s imulator  provides 
a tape exte~iding to the right. However  the p rogrammer  n'my use mult iple tapes,  
or a two-way open. tape by marking off the tape in sections and  programming  
accordingly. Note  that  B ' s  are read in as part  of the data.  



A [I'Ut{iNG MACHINE SLMULAT()[g 

A sample program for the Turing machine givea in i<leene [15, p. 36.{] is showlx 
rn -~ below, ibis maehiae pri,~ts a t o,~ the first blank square at or to the right of the 

sea{-ll~ec/ s q u a r e .  

Symbolic 
Address II~slruclilm. 

I,OC1 T (I,0()2, B) 
R1 
T(LOC1) 

LOC2 W(l) 
ENI) 

Suppose the irfitial tape appears as follows: 2yes " "  :cx.B . . '  where the bar 
indicates the scanned character and the ;~:'s ave nonblank ctmraeters. Then the 
final tape would be: z t z e  . . .  z~.i . . . .  

N o t e .  This program will work for a machine with an arbi t rary charaeter set 
containing 1 and B. The above instruetioa set is not a minimal one for writing 
programs representing Turit~g machines (see [1]) but was made as flexible as 
possible while still retaining the esseutial features of a Turing machine. In con- 
sideration of execution speed and program efficiency the flexibility of the trans- 
fer instructions is useful. 

lilt is shown ill [2] and [3], that  one may also represent fiaite aut, omat~t with 
programs on. this computer with the restriction that  one doe.s not use tile left- 
shift eommaad.  

3. Subro'~ttb~,es 

Both Turing [61 and Wang [1] use subroutines with variables as argumeuts 
(called s k e l e t a l  table,s" by Turing) in their developments, but mainly as a con- 
venient short-hand llotati(m for their exposition. I t  was understood that  in the 
actual machine these skeleton tables were copied down where they appeared 
with fixed arguments  replacing the variables. We have tried to follow the more 
usual concept of subroutine as it appears in actual computer technology where 
the subroutine is a subprogram transferred to or executed from the main pro- 
gram. "rite arguments  are supplied to the subroutine by the execute instruction 
of the maia  program and they are substituted for the variables appeariug in the 
subroutine. The order of substitution is governed by an expressiorl of the form, 
NAME(a1 ,  a2, . ' .  , c~k), where the a~ denote the symbolic addresses and char- 
acters which play the role of variables in tile subroutiae. An expression of this 
type must  precede each subroutine. 

Two examples of subroutines equivalent to the skeletal programs in Tuving 
[6, pp. 236-7] are given below. These subroutiaes will work ml any  tape format  
provided tha t  the left end of the tape is marked by an " E "  oil the first two 
squares. The variables in the following subroutiue definitions are LOC1, LOC2 
and A. Note that  we use the same notation for variables as for arguments.  The 
distinction is made by the first expression of the subroutine which designates 
them as variables. 



M. \V. (![;IUPI~ 

/i'.ca:?i'p:: I 

SUBI 

5: 

S 3 

SI :BI(LOCi, IA)C2,A)  
T(S1 ,E) 
f,1 
T(S[ B1) 
'F/I.OC1,A) 
T(S'3,B) 
I{1 
T(S1) 
R: 
"t'(LOC~,B) 
T(S1) 
E N D  

E.ramp/e 2 
S[:B2(LOC1,L()C2,C) 

S [ B 2  SUB:(S1,LOC2,C) 
s~ W(B) 

T(LOC1) 
ENI)  

(20~ReJll 

S i B3 

This subr<mth~e finds ihe first A on the t~pe 
:tud goes to LOCi.  If no A exists, ill. goes ~o 
IA)C2. 

This subroutine er::~ses first C m M  goes to 
LOC1. If there is no C, it goes bf~ck to 
1,OC2. 

SUB3(LOC1,D) 
SI:Bg(SUB3 LOC1,D) 
E N I )  

Erase all D ' s  on the tape grad go to LOC1. 

Although Turing's  subroutine in Lxamp e 3 is quite elegaHt in ila definition, 
a more efficient routine tha t  would nol: need to proceed to the beginuing of the 
tape after  each erasure could be writl:en as follows: 

SUB3(LOCl,A) 
SU~S StTm (St,LOCi,A) 
S: W(B) 
$3 R1 
S4 T(S1,A) 

T(S~,B) 
T(Sa) 

$2 R1 
T(S1,A) 
T(LOC1,B) 
T(S3) 
E N I ) 

In both Examples It aad 4 we could have incorporated re:other subrotll, iIte that  
would search right for the first A, or if no A, it would go to LOCI.  

4. The Simzda:o~' 

In tm~' "" so~.tion we dis(,u~s ......... some of the essentiM features of l?he 1620 program 
that  interprets the Turing machine programming tat~guage described above. 

The  simulator program can be broken down into four Mocks, explained below. 



A TURING MACHINE SIMULATO[g 5 

1. Pass 1 of the loader. This block sets up symbol tables for the symbolic 
addresses ii~ the subroutines arid tile maiit program. 

2. Pass 2 ~0" the loader. The Turil~g program is coded and loaded into con- 
seeutive digit positions of cot'(,, memory with record marks separating instruc- 
tions and symbolic addresses replaced by the actual core addresses of instruc- 
ricers. 

3. Loading the computational tape. Tile cottseeutive digit positions in memory 
that serve as squares on the tape (2 digits pet' square) are marked with B's; and 
then the user's initial tape content is read hr. 

4. Interpretive mode. With tile exception of the execute subroutitm command 
the i[,structions are very easy to interpret. The core address of the scanned char- 
sorer and the current instruction address are the most important things to keep 
track of. A shift instruction of N squares only requires that we add ± 2 N  to the 
seanned character address. To interpret a write instruction, we need to transfer 
the coded form of the character in the write instruction to the contents of the 
scanned character address. To execute a transfer, we replaee tile current in- 
structioI~ address with the instruction address in the transfer instruction. 

Tile subroutines are ii~terpreted by tile same part  of the simulator as tile main 
program, where the arguments are referred to using tile indirect addressing 
feature of the 1620, This feature allows any level of indirect addressing so the 
nesting of subroutines along with their arguments poses no special problems. We 
keep track of tile instruction addresses of the execute instructions by storing 
them in push-down storage lists. 

If we ,low consider the speed of the Turing machine instructions as interpreted 
, by the simulator we can say that  each type of instruction takes a certain fixed 

amount of time (roughly speaking) to execute with tile exception of the execute 
subroutine instruction where the execution time is a function of the ,lumber of 
arguments. The important  thing to notice is that, tile shift instructions take a 
fixed amount  of time and do not depend on the lmmber of squares to be shifted. 

5. The Universal Machine 

["or the definition of a Universal Turing Machine, U, the reader is refexrcd to 
[6t. Essentially, the idea is to write tile program, P, of any machine on U's tape 
and have U interpret the instructions of P. The design of a Universal Turing 
machine, U, is determined by the encoding scheme that  is chosen to represent 
the "special-purpose machine," P, and its computation on U's tape. Thus, the 
problem of designing a Universal Machine is tha t  of simulating a class of Turing 
computers on a single computer or interpreting the programming language of one 
computer on aI~other. 

Given the Turing machine language as described above, it is natural to try to 
design a universal machine by simulating a modified versim~ of the language, 
discarding the nonessential parts of the notation. To simplify matters we re- 
strict our at tention to special-purpose machines that have the character set 



(i M. W. ( 'Ut t ' / ' IS 

~(), 1, B} (see [7]). Wc Mso restrict, t.he hm~tu:tge to stfifls of ol~ly ore' squ~re ,'¢I a 
~imc. 

In writhig the program for U we will try to miMmize the time l;ha[ U /.a.kes to 
int~'rpret all arbiiravy spedal-purpose program P, written in the modified pro- 
~rarnming la~.guag< 

tt  is btqicw~d that time as well as l;he slate-symbol product: ix ~ factor in Iht, 
measure of the ('omplexity a~tt(l efficiency of total computaiioft  of a Turing ma- 
chicle. Researc}x i~io this quest io~ is curreutly b~ing eondtlel~ed at Wesleyan 
using the simulator described here. 

At this point imevested readers might care to go to the Appendix f o r a  de- 
tailed expla~tation of su(?h a UaiversM machine. We will eontimte here with a 
get~erat discussion of Ie~lmiques in designing art encoding scheme t;o represe~t P 
that  will save time in U's execution. 

Beeause [ ' s  view of its owe tape is one-dimensionM, much of it;s time is spe~t 
in shiftSng loops which look for special marks. The  most t ime spent i~, these 
shifting loops is in two parts of U's program. 

(1) The part  that  shifts from at1 instruction it~ P to the scamped chara~Iter 
in P's eomputationM part  of the tape. 

(2) The part  lhat  searches for the next instruction of P. 
One can minimize the time in (1) by marking the current iastruet, ioa and P's 

seam-led character  by a single mark aud then shift directly to tha t  mark. This 
it~volves no copying and subsequent; trim and error searchiag which is very 
costly. 

Let us now consider the timing involved ia (2). Let machi~te U consider the next 
instruction of P to be immediately to l;he right of the current iastruetioa unless 
tha t  instruction is a transfer. This eliminates much of the effort spent ia searching 
for the ~ext instruction which occurs in Turing's  formulation, for example. In 
order to speed up the interpretat ion of the transfer instruction, we modify the 
language of P as follows. We mark each addressable instruction of P's program 
with the same marl<. The transfer it~struetion, T(k), now means "transfer  go the 
]cth addressable ir~struetion." We represent 1~: on U's tape fit stroke notat ion 
(i.e. a string of/,: consecutive t'3). 

The  interpretat ion of 7'(1,:) involves shifting back and forth to locate the/c th  
addressable instruction. The time required by U to interpret T(k) is determined 
as follows: Let  

C = the t ime it takes to shift from the location of 7'(],:) o~ [;'s tape to the 
begriming of U's tape; 

C.: = the time it takes to shi~ from the location of the ith addressable ir~- 
st:ruetio~ of P to the begimting of U's tape; 

t~ = the nor~b~al time to execute 7'(i).  

There, 

~ = :~(C + (;,), ~ = 2((;' + C,) + 3 ( ( ;  + ('~) 

a~d i~ general, 



A TU[t[NG MAC[lINE S I M U L A T O r {  

k 

~, = c +  ( ' ,  + 2 ~  ( c  + ('~). (1) 
i = t  

"Fh~ nominal time gives a good approximation to the actual interpret, ation 
time. (We have neglected some inconsequential intermediate operations.) 

Itt e:ffeet, Lee [3] requires each instruction of P to be addressable. Thus for 
each instruction T(k)  in a program P with n instructions usittg the above 
scheme, a eorresponding program l "  using Lee's sehelne would have the in- 
struction T(k/),  where n _~ k' ~ k ~ 1 and therefore require la,, ~ t/~.. Hence a 
Universal program, in our system, identical to Lee's Universal program except 
for the method of interpreting transfers, would rtnl faster on t ~ than the Lee 
maehi~e would on P'. 

An alternate procedure that would result in even faster runni~tg time for many 
programs is to allow for two transfer instructions: trattsfer forward, TR(k) ,  
and back TL(Ic), to the/cth addressable instruction, when k is counted front the 
eurrent transfer instruction. The nominal time required for U to interpret TR(t,:), 
denoted by t//e, can be obtained from (1) by setting C = 0 attd substituting 
(',+j - C for C'j, where C~ N C =< C~+1. We get, 

k 

t,.:': = C',+~ - C + 2 ~  (C~+j - C) .  (2 )  

Similarly for 7'L(t~:) we get, 
k 

t~,. L = C - C;'~--.~-~-~ + 2 ~  (C - C~__~+~). (:~) 

l"or some programs tz: may be less than the equivalent l[:, where 6 ~ =< (;' _-< 6 ~+~ 
and/c -< i, k' = i -  k q- 1. By looking at formulas (1), (2) and (3) we have 
the following : 

Remarlc. For a given k aad C~ _~ C =< C,~t: (1) if i N 2/c, then tlL/,.+l < t,¢ 
lJc-i and (2) if i < /c, then ~ < tk 

We may now construct a U that interprets three types of transfers T, 7'R and 
TL. Using the results of the above remark we may conclude that  any program 
l? will run at least as fast when coded using all three transfers than when coded 
using only ~1' or only TIt artd TL. 

6. Some Experimental Results 

Three Universal Machines in tile literature [3, 6, 9] were programmed using 
the Turing Machine Lat~guage described above. 

Turing's Universal ~,iaehine was not translated directly into out' language. 
Instead we used his encoding scheme for instructions of P with the mirror modi- 
fication that  quadruples replace his quintuples. We also adhere to his idea of 
copying successive total configurations of P. Thus, our version of Turing's 
Universal Machine is not an exact copy of his but, does follow his rhode of inter- 
preting P. On the other hand, Lee's Universal 3Iaehine Program was transcribed 



M. W. ( 'URff ' [S  

directly, i~,struction by  iustruction., into the Tur ing  Mach ine  Language,  mak ing  
only the uecessary changes d ic ta ted  by  instruct ion format .  

The transit io,  table for the W a t a n a b e  Universal  )~[achine, &s t a t e  X 5-sym- 
bol, was programmed in the following way :  Let & stan(1 for the it,}~ s ta te  atld 
c~ the j-th character. Thet,  this would be represented by W a t a n a b e  as follows: 

i c i • i i 
. . . . . . . . . . . . .  i . . . . . . .  i 

s~ ,[ " "  ck ,A or L,. . . . .  i "'" 
............... i ...................... i ................................................... i ............. • ] ! 

: i I i 

The corresponding p rog ram for s ta te  8~ used its this paper  is the  fo l lo~ing:  

SI T(C1, e0 
T(C2, e~) 

T(CJ, ca) 

C a  W(Ck) 

t{1 or L1 
T(SN) 

TABLE A 

(1) Turing (2) Watanabe 

o 

81 0 w(1) Se 
S~ 1 w(0) $2 S~ W(1), R, 85 W(0), R, S, 
8~ 0 t{ S~ 85 W(D,  L, S, W(0), R, S~ 
8:, 1 R S~, S~ W(0), IL S:, W(0), L, 8:, 
Sa 0 stop 
8a t w(0) Se 

(3) Lee (4) Wesleyan I (5) Wesleyan II  (6) Wesleyan I I [  
1 T(7, 1) A T(3, 0) A TR(2, 0) A TR(2, 0) 
2 W(1) A W(O) A W(0) A W(0) 
3 R1 R1 R1 R1 
4 T(7, 1) T(1) TL(2) T(1) 
5 w ( 1 )  A W ( 1 )  A W ( 1 )  a W ( 1 )  
~ T(12, i) PA R1 R1 
7 W(0) T(2, 1) TL(2, 1) TL(2, 1) 
8 RI ENI) ENf) END 
o T(L ~) 

~o w(D 
~1 T(~L I) 
12 END 



A TUI{ING M A C H I N E  S I M U L A T O R  

TABLE 1 

i E F G Encoding Scheme i A B C D 

. . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ...... 
1. Turing [ Turing machine 266 564 SiXsO Sa, quad- . ~ 

{ 
/ ruple teger L 

2. Lee 

3. Watamd)e 

4. W(slcyan I 

5. Wesleyan [I 

[ delanguago 
'1 scribed above 
I Same as 1 except 

w e r e  n o t  u s e d  

Same as ] 

~ a m c  a s  i 

Same as 1 

Same as 1 

105 

54: 141 

129 269 

145 277 

167 343 6. Wesleyan 
I I I  

127 tg, L, W(X), 
.7'(K, 1) 

SiXj Yt~z, & 
quintuple 

Same as (2) plus 
T(K), T(f(, 0) 

1~, L, W(X) 
TR(K, X), 7'l~(K) 
TL(K, X), TL(K) 
The union of (4) 

and (5) 

2 2 12 

5 2 3* 

16 3 8 

16 3 8 

16 3 8 

A = Instruction set for U. 
B = Number of instructions for U with subreutines. 
C = Number of instructions for t without subroutines. 
D = Instruction set for P that U can interpret. 
E = Cardimdity of U's character set. 
F = Cardinali ty of character set available for P. 
G = Number of instructions or states for P. 

* Since no provision is made for halting in the Watanabe formulation a de-nothing state 
was added to " s top"  the computation. 

T A B L E  2 

Encoding Scheme A 

Turing 445 
Lee 204 
Watanabe 112!) 
Wesleyan I 51 
Wesleyan I I  54 
Wesleyan I I I  52 

B C Executio~ Time 

92,444 930 31 minutes 
15,118 207 2 minutes, 12 seconds 
36,719 28,303 39 minutes 

1,680 84 40 seconds 
1,453 84 39 seconds 
1,403 76 36 seconds 

A = the number of tape squares used by U to execute P. 
B = the number of tape squares shifted by U in executing P. 
C = the number of symbols written and erased by U in executing P. 

Our  o w n  ve r s ions  of a Un ive r sa l  T u r i n g  M a c h i n e  ( W e s l e y a n  I ,  l I ,  I I i )  were  

w r i t t e n  to  i n t e r p r e t  t i le  th ree  t y p e s  of t r ans fe r s  desc r ibed  ir~ S e c t i o n  5. 

All  six u n i v e r s a l  m a c h i n e s  were  t e s t ed  us ing  a spec ia l -pu rpose  m a c h i n e  P 

that, c o m p l e m e n t s  a b i n a r y  t a p e  and  s tops  w h e n  it e n e o u n t e r s  two  consecu t ive  

zero ' s  on  the  i n p u t  t ape .  

T h e  m a c h i n e  P appea r s  as s h o w n  ia T a b l e  A in t h e  v a r i o u s  sys t ems  tes ted .  

W i t h i n  smal l  va r i a t i ons ,  i t  is i n t u i t i v e l y  c lear  t h a t  these  p r o g r a m s  for P a re  



10 M . w .  (:Ut~T~S 

FABL E 3 

E~coding Scheme 

T u r i n g  8/t: ~ L .~ 32/,: 2 i 80/c 
I,ec 5A: ~ L ~ 8(}k e + 120k -b 30 
Watan : tbe  3.'2 v~ .~ L 

Wesleyan  [ 2/; ~ L ~ 4/~ 'e @ 14/~: 
W e s h y a n  I[ 2/,' .~ L 2 2/t..e ~- INk; 
\Vesley:u~ 1[[ 2# ~ L ~ 2k 2 +. 18k 

'mfinimal," i.e. the complementing task is a very simple one and these programs 
do only what is essential. Comparalive results are given in TaMes 1-3. 

In Table 2 the input tape was 01100 arid this tape is tile minimal length tape 
~hat requires all i~struct, ions and all table entries of P to be exeeuted by each U. 

lit is also important to note how much tape is required to encode an arbitrary 
2-symbol, k-state machine P, for each Universal 5[achine mentioned above. We 
have the following conservative bounds ill TaMe 3: Let L equal the number of 
squares of U's tape take>_ up by tlle program P, and/c equal tile number of states 
for P. 

Ill interpreting the results in Tables 1-3, one should take the following facts 
into consideration. The timing of the Uniw~rsal Turing and Warm,abe machines 
is not a fair representation of their capabilities as no attempt was made to re- 
write these as efficient programs. We simply translaied Waiauabe's machine as 
stated above, wiihout tMdng advantage of features in our language, but~ in such 
a way thin the number of squares shifted and the number of symbols written is 
the same as if one had simulated t.he transiticm taMe directly. The same applies 
to Lee's machine. 

We recognize that the execution time of a given U depends on l)he program- 
ruing skill used in constructing U in a particular language. As we have said, tile 
Watanabe machine was penalized by the direct translation into our language 
(i.e. using his eneoding scheme for P, we could have programmed a more effL 
cient U. For this reason, we have included the data in columns A, B, C.) 

For a given encoding seheme one tries to design U so that the number of 
squares shifted and number of symbols written will be a mhfimum for arMtrary 
P (this may ~lot be possible). It  is believed that the U's tested approach this 
aim, even though the programming for U may not be the most efficient time- 
wise. (For example, many unessential irlstructions of the transfer type may be 
executed. This most likely is tile case for the Watanabe program.) 

If this is the ease, then lhe data in columns A, B and C of Table 2 are evi- 
dence in support of our remarks in Section 5 that the state-symbol produet is 
not the only criterion for measuring the complexity of a Turing Machiue. 

AcAnowledgmerda. The developmetH of the Turing maehir~e simulator was 
carried out at the Wesleymt Computer l~aboratory under the guidance of Pro- 
lessor E. K. Blum arid was partially supported by NSF Grant GP 1356. Special 
thanks are due to Robert Travis for his able assistance ia programming the 
simulator and to Professor Blum for his advice and suggestions in writing this 



:k TURING MACHINE SIMULATOt~ I 1 

paper.  The  idea for the  different  t ransfer  schemes in P 's  progra.m came from 
conversat ions wi th  R o b e r t  T rav i s  and  Pe te r  Hagen.  Tur ing ' s  Universa l  P rog ram 
was p r o g r a m m e d  by Richa rd  Cut t le .  

I{EFERENCES 

1. \V:~N<;, H. A wn'ient to Turing's theory of eomputing maehines. J. A CM 4, I (Jan. ]957). 
63 -92. 

2. LF~I.:, C.Y.  Categorizing automata by W-Inachine programs. J. ACM 8, 3 (July 1961), 
384-399. 

3. - ...... • Automata and finite automata, BST,I  ,99, 5 (1960), 1267-1695. 
4. MINSKY, M. ]L. Reeursive ur~solvabitity of Post's problem of "Tag" and other topics in 

theory of Tm'ing machine. J. Malh. 775, 3 (Nov. 1961). 
0. KLEENE, $. [YttFOt~'ttCliO'~, tO Megamathematics, Van Nostrand, New York, 1952. 
6. T~:ft[N~b A. M. On computable numbers with an application to the Entseheidungs- 

problem. Proc. Lond. Math &m. 2, ~-3 (1936), 230-265. 
7. SmXXNON, C. A universal Turing machine with two internal slates. In A~ulomata S&~dies, 

Princeton U. Press, 1956. 
8. RAmN, M. O., aND SCOTT, D. ti'inite automata and their decision problems. IBM J 

Res. Develop. 3 (1959), 114-125. 
9. WA'rnNmaE, S. 5-symbol 8-state and 5-symol 6-state Universal Turing M~ehines. 

J. ACM 8, 4 (Oct. 1962), 476-483. 

A P P E N D I X .  A Universal  Tur ing  Machine  

We shall  s t a t e  the  convent ions  for represent ing  a specia l -purpose  machine 
on U ' s  tape.  U ' s  t ape  is d iv ided  up  into two sections. The  first section, U~, 
contains P ' s  p rog ram and the  second, U~, is reserved for P ' s  eompu ta t iom The  
language for P is a modif ied vers ion of t h a t  given in Section 5. I t  is as follows: 

R : shift right one square 
L : shift left one square 
~1~2~ : w r i t e  c~ ~ 1O, 1, B}  

Tk = e~ : If the scanned character is a, transfer to the kth addressable instruction sta.rt.- 
ing at the beginning of the tape. h is written in stroke notation. 

TIRh = a: If scanned character is a, transfer to the kth addressable instruction to the 
right of the current instruction. 

TLlc = c~: If scanned character is a, transfer to the t:th addressable instruction to the left 
of the current instruction. 

Subrou t ines  are  not  p rov ided  for. The  beginning of the  t ape  is marked  by  
/ / / / /  . U, is s epa ra t ed  from Ue by  @ @ @ @ @ .  This  eonveut ion makes  shift.ing 
back and for th  from U, to U2 faster.  The  ins t ruct ions  of P a r t  in te rpre ted  in se- 
quence unt i l  a t ransfe r  ins t ruc t ion  is encountered.  

in s t ruc t ions  are  wr i t t en  on consecut ive  squares,  each ins t ruct ion  separa ted  
by a " . " .  

A l t e rna t e  squares  in U2 are  ava i lab le  for P ' s  computa t ion  and  the  scanned 
charac ter  on P ' s  c o m p u t a t i o n a l  t a p e  is marked  b y  an " S "  on the  square to the  
left. To mark  the  cur ren t  ins t ruc t ion  being in terpre ted ,  a " C "  is wr i t ten  over  
the " . "  to the  left. Addressab le  ins t ruct ions  are marked  by  an " A "  on the  square 
to the  r ight  of the  "2 ' .  While  in te rp re t ing  t ransfer  ins t ruct ions  "$"  and " , "  
are used in the  searching procedures.  



12 i~cI, ~V. CUR"£ IS  

* UNIVERSAL TURING MAC}ONE PROGRAFt 
w SHIFT LEFT ROUTINE 
SURROUY I NE 

SLTf. ) 
SLY T(SI,.) 

LI 
T(SLT) 

ST END 
SNPT RIOHF ROUTI HE 

SUe ROUTINE 
ST, I f ( . )  

SKI T{SI..) 
P,I 
T(SRT) 

S~ ENO 
* SHIFT FO BEGINNIM(; OF TAPE ROUTINE 
S US P OUT I t;E 

STt. ) 
S:I T(S2,/) 

L5 
TISqT) 

S2 ENO 
* FIND AND HARK NEXT SEQUENTIAL INSTi~UCT!ON 
S JBi:0LIT I tIES 

SFtll (C } 
S t N I  SLF(C) 

'~t ! .  ) 
R1 
SOT(, ) 
wIC~ 
END 

* SHIF] TO SCZ~'iNED C ARACTER 
SU BiKOUT I HE 

S ~SS6S) 
SHSS F(SI,  ,)) 

R5 
F(S,~SS) 

SI SFTtS) 
ENO 

* FIK; F'~RST h 0;4 TAPE 
SU~ ROUF I NE 

SFSTCA) 
SPSY S]TCi ) 

SRT(A) 

P;: O~:;:A:I 
PRU~ SF:T¢,) 

'4( C ) r~fJ<K F H{ST f NSTRUC T I ON 
S; Tt ,') 
SFtTC~Q 
?;iS) i,,~RK INI I  }*\L SCANNEO SYIdBOL 
S ; T ( . )  

$6 SP, F(C) 

SKIP OVER ADDRESSES 
54 RI 
$3 T(SI,A) 

T(S~) 
ST R~ 
* ~NTERPRET A RIGHT SHIFT INSTRUCTION 
S~ T(RS,R) 
*- INTEkPRET A LEFT SHIFT INSTRUCTION 

T~LS,L) 
* INTERPRET A WRITE INSTRUCTION 

T(,/R,W) 
* INTERPRET A IRANSFER INSTRUCTION 

T(TR,T) 
* INTERPRET A END 

T(ENO,E) 
* ILLEGAL INSTRUCTION QUIT 

TIENO) 
* (',o TO NEXT INSTRUCTION 
S~ SLT(C) 

SFNI/C) 
T(S~) 

* THS SECTION INTERPRETS A TRANSFER INSTRUCTION 
IR SRY(.} 

L2 
TEST IF STRA)OHT TRANSFER 
T(TI.~) 
T(r4) STRAIGHT TRANSFER 

TI P,I 
* TEST FOR POSSIBLE TRANSPER 

T( /3 ,1 )  
T(TSiO) 
~?SS(S) 

T(H+ S) 
I S5 

T6 SHSS(S) 
RI 
r ( r ~ , o )  
T(S5) 

T3 SHSS(S) 
RI 
T(T~,I) 
T(S~) 

1"4 SFST(C) 
W (. 
SRT(T) 
R1 

* TEST TYPE OF TRANSFER TO iNTERPRET 
T(TL, L) 
T(TRI,R) 
W ( * )  
S~T(.)  

T8 SOT(A) 
W(S) 
SBT . ) 
SRT(*) 
w ( I )  

R I  
T(T7, I) 
S!IT(. ) 
SOT{S) 
',/(A) 
L1 
w(C) 
T(S4) GO TO )4AEKED INSFRUCTION 

T7 w(* )  
Si l t  ( . )  
soY(S) 
WTA) 
Ri 
TITS) 

* HATCH LOCATIONS FOR TRA~ISFEF, ROUTINE 
TRI RI 

w(S) 
TS3 SRT(A) 

W ( * )  
ShY(S) 
w(1) 
R1 
T(TSI, 1) 
SRT(*) 
W(A) 
LI 
w(c) GO TO F:ARKE0 ~ NSTRUC TI ON 
TIS4) 

rSl W($) 
SRT(*) 
W(A) 
R~ 
T(TS3) 

TL ~I 
w($) 

TLS2 $LT(A) 
w(*) 
SRT(S) 
V/(1) 
RI 
T ( T I S I , i )  
SLT(*)  GO TO HAF<KEO ~ NSTRUCT) 01~ 
WCA) 
L1 
w(c) 
T(SN) 

TESI VY(S) 
SLT(*) 
WIA) 
L1 
T(TLS2) 

* TMS SECTION INTERPRETS TIE RIGHT SiIIFr COhI~'iAIO 
RS S {SS(S) 

vl(~;) 
~2 
w(S) 
T(SS) 

* TIiIS SECTION INTERPRETS THE LEE[ SHIFT C0~:~iAH0 
L5 SIfSS(S) 

Vt(E~) 
L2 
w(s) 
T(SS) 

* THIS SECTION II~TERPRETS THE WRIYE CON~.!ANO 
W~< RI 

T(WT,I) 
T(W2,0) 
SR';SS (S) 

w(B) 
T(SS} 

W2 SHSS(S) 
R1 
w(o) 
TCS5) 

VII SUSS(S) 
RI 
W(1) 
T(S5) 

* POSITION THE TAPE HEAD AT COHPUTATIOHAL PART OF TAPE FOR EXIT 
END T(E I ,(~) 

EXIT TO NEXT INSTRUCTION RS 
T(ENO) 

EI END 

FiG. 1 

For the program (6) in Table A the initial tape reads: 

/ / / / / .ARTll  = 0.AW0.R.T1.AW1.R.TLll = 1.E@@@(~@BOB1B1BOBOBBB ... 

An intermediate tape content while interpreting the first and then the fifth in- 



A T U R I N G  M A C H I N E  S I M U r L A T O R  

struction is: 

/////.ATRI$ = 0 . A \ ¥ 0 . R . T i . , W i . t { . T L l l  = 1 . E @ @ @ @ @ S O B 1 B 1 B O B O B B B  . . -  

/ / / / / . A T [ { l l  = 0 . A W 0 . R . T 1 C A W 1 . R . T L l l  = 1 . E @ @ : @ @ @ S 1 B 1 B t B O B O B B B  . . ,  

The final tape content is: 

/ / / / / . A T R l l  = 0 , A W 0 . R . T 1 . A W 1 . R . T L l l  - .  1 C E @ @ @ @ @ B I B O B O B 1 S O B B B  . . .  

13 


