Turing Machines

KR Chowdhary
Professor \& Head
Email: kr.chowdhary@ieee.org

Department of Computer Science and Engineering MBM Engineering College, Jodhpur

October 25, 2010

Turing Machine: Agenda

- Alan M. Turing
- Church-Turing Thesis
- Definitions
- Computation
- TM Configurations

Alan M. Turing

- Alan Turing was one of the founding fathers of CS.
- His computer model - the Turing Machine - was inspiration/premonition of the electronic computer that came two decades later
- Was instrumental in cracking the Nazi Enigma cryptosystem in WW-II
- Invented the Turing Test used in AI
- Legacy: The Turing Award, eminent award in Theoretical CS research

Turing Thesis

- Any algorithm can be carried out by Turing machine

solving equations

- Consider Fermat's equation(last theorem): $x^{n}+y^{n}=z^{n}$, where n is a positive integer
- Question: Given an n, does this equation have a solution in integers?
- We could create a Turing machine T which would search for solutions when given an input n by working through a list of integers.
- Then $T(n)$ would halt when $n=1$ (having found a solution, such as $x=1, y=1$ and $z=2$, and when $n=2$ (having found a solution such as $x=3, y=4$ and $z=5$
- But T would not halt for any other input

Church's Thesis

- Any reasonable attempt to model mathematically computer algorithms and their performance, is bound to end up with a model of computation and associated time cost, that is equivalent to Turing machines within a polynomial.

A Thinking Machine: e.g., Successor Program

- Sample Rules:

If read 1 , write 0 , Go Right, repeat.
If read 0 , write 1, HALT!

- If read \#, write 1, HALT!
- Let's see how they are carried out on a piece of paper that contains the reverse binary representation of 47:red colored number represents position of head.
111101 \#
011101 \#
001101 \#
000101 \#
000001 \#
000011 \# HALTS; the result is reverse of 48 .

A Thinking Machine: e.g., Successor Program

- So the successor's output on 111101 was 000011 which is the reverse binary representation of 48 .
- Similarly, the successor of 127 should be 128 .

A Thinking Machine

- It was hard for the ancients to believe that any algorithm could be carried out on such a device. For us, it's much easier to believe, especially if you have programmed in assembly!
- However, ancients did finally believe Turing when Church's Lambda-calculus paradigm (on which lisp programming is based) proved equivalent!

Informal discussions

- A Turing machine (TM) is similar to a finite automaton with an unlimited and unrestricted memory. A Turing machine is however a more accurate model of a general purpose computer
- A Turing machine can do everything that a real computer can do
- But A Turing machine cannot solve certain classes of problems

Turing Machine Model for computation

Infinite Tape

Finite control

Formal Model of Turing Machine

$$
\begin{aligned}
& M=(Q, \Sigma, \Gamma, \delta, s, H) \\
& \Gamma=\Sigma \cup\{\#, \triangleright\} \\
& H \subseteq Q \\
& \delta:(Q-H) \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
\end{aligned}
$$

Q is states
H is Halting states
Σ is set of input symbols
δ is transition function.

A Thinking Machine

- A Turing Machine (TM) is a device with a finite amount of read-only hard memory (states), and an unbounded amount of read/write tape-memory. There is no separate input. Rather, the input is assumed to reside on the tape at the time when the TM starts running.
- Just as with Automata, TM's can either be input/output machines (compare with Finite State Transducers), or yes/no decision machines.

Turing Machine

- 1936: Given a logical arithmetic computation, for which complete instructions for carrying out are supplied, it is possible to design a TM which can perform this computation
- TM v/s Human: states, memory, scratch pad paper
- TM v/s olden days computers
- TM v/s PDA
- $\left\{a^{n} b^{n} \mid n \geq 0\right\} \mathrm{v} / \mathrm{s}\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
- powers of TM

Turing Machine Criteria

- These are Automata
- As simple as possible - to define formally, describe and reason about them
- As general as possible (any computation can be represented by them)

Acceptability by Turing machine

A string w is accepted by M if after being put on the tape with the Turing machine head set to the left-most position, and letting M run, M eventually enters the halting state state. In this case w is an element of $\mathrm{L}(\mathrm{M})$, the language accepted by M :-

$$
L(M)=\left\{w \mid w \in \Sigma^{*} \wedge q_{0} w \Rightarrow^{*} y\right\}
$$

where, y is halting configuration

Turing Machine solves a Problem: Erase all a's

Consider a TM $M=(Q, \Sigma, \Gamma, \delta, s, H), Q=\left\{q_{0}, q_{1}\right\}$,

$$
\begin{aligned}
& \Sigma=\{a\}, \Gamma=\{a, \#, \triangleright\}, s=q_{0}, \\
& \delta\left(q_{0}, a\right)=\left(q_{0}, \#, R\right) \\
& \delta\left(q_{0}, \#\right)=\left(q_{1}, \#, L\right)
\end{aligned}
$$

- $w=a a a a$
$q_{0} a a a a \#$
$\vdash \# q_{0} a a a \#$
$\vdash \# \# q_{0} a a \#$
$\vdash \# \# \# q_{0} a \#$
$\vdash \# \# \# \# q_{0} \#$
$\vdash \# \# \# q_{1} \#$
$a \mid$ (\#, R)

Representation of a Configuration

If $i-1=n$ then $X_{i}=$ \#. If $i=1$ then $X_{i}=\triangleright$ and the head will move to right, else it will fall off the tape or we say it crashes. If $i>1$ and $i=n$ then for $d=$ L , we write a move as

$$
\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{i-1} q \mathrm{X}_{i} \mathrm{X}_{i+1} \ldots \mathrm{X}_{n} \vdash_{\mathrm{M}} \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{i-2} p \mathrm{X}_{i-1} \mathrm{Y}_{i+1} \ldots \mathrm{X}_{n} .
$$

Infinite Tape

q
Figure 12.2: Turing Machine representing

$$
I D=X_{1} X_{2} \ldots X_{i-1} q X_{i} X_{i+1} \ldots X_{n}
$$

Alternatively, for $i>1$ and $d=\mathrm{R}$, a move is written as

$$
\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{i-1} q \mathrm{X}_{i} \mathrm{X}_{i+1} \ldots \mathrm{X}_{n} \vdash_{\mathrm{M}} \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{i-1} \mathrm{Y}_{p} \mathrm{X}_{i+1} \ldots \mathrm{X}_{n}
$$

Configuration-1

- A configuration of a TM:
- Current state
- Symbols on tape
- position of RW head
- A formal specification of configuration:
- uqv, where u, v are strings on Σ, and $u v$ is current content on tape, q is current state, and head is at first symbol of v.
For example, 00101q5011 where read head points at 0 (third digit from end) and state is q_{5}.

Configuration-2

- For Two configurations:
$u a q_{i} b v$ and $u q_{j} a c v$, where, $a, b, c \in \Sigma$ and $u, v \in \Sigma^{*}$

$$
\begin{aligned}
& u a q_{i} b v \vdash u q_{j} a c v \text { if } \delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right) \\
& u a q_{i} b v \vdash u a c q_{j} v \text { if } \delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)
\end{aligned}
$$

- Two special cases:
- The left most cell:

$$
\begin{gathered}
q_{i} b v \vdash q_{j} c v \text { for } \delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right) \\
q_{i} b v \vdash c q_{j} v \text { for } \delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)
\end{gathered}
$$

- On the cell with blank symbol:

$$
u_{i} q_{i} \text { is equivalent to } u a q_{i} \#
$$

Example: of language recognition

- Design TM to accept: $a^{n} b^{n}, n \geq 1$
(1) let $M=(Q, \Sigma, \Gamma, \delta, s, H)$
(2) M replaces left most a by A, and then head moves to right until it encounters left most b
(3) Replaces this b by B, and then moves left to find the right most A. Then moves one step right to left most a
(4) Repeat Step 2 and 3 in order, i.e., $2,3,2,3, \ldots$
(5) When searching for b, if finds a blank character \# (i.e., $\left.\left|a^{n}\right|>\left|b^{n}\right|\right)$, then M halts without accepting
(3) If a is not found but it finds b, then M halts without accepting, (i.e., $\left|a^{n}\right|<\left|b^{n}\right|$).
(Ofter changing b to B, if M finds no more a then it checks that no more b remains. If this is true then $a^{n} b^{n}$ is accepted by M i.e., $\left|a^{n}\right|=\left|b^{n}\right|$)

Example: of language recognition

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \Sigma=\{a, b\} \\
& \Gamma=\{\triangleright, a, b, A, B, \#\} \\
& s=q_{0} \\
& H=\left\{q_{4}\right\}
\end{aligned}
$$

Example: of language recognition...

- Design TM to accept: $a^{n} b^{n}, n \geq 1$
- Movement of RW head from start to right until b is found:
$\delta\left(q_{0}, a\right)=\left(q_{1}, A, R\right)$
$\delta\left(q_{1}, a\right)=\left(q_{1}, a, R\right), \delta\left(q_{1}, B\right)=\left(q_{1}, B, R\right)$
$\delta\left(q_{1}, b\right)=\left(q_{2}, B, L\right)$
$\delta\left(q_{1}, \#\right)=\left(q_{1}, \#, L\right)$, reject, when search for b fails
- move from R to L until A is found and start back:
$\delta\left(q_{2}, B\right)=\left(q_{2}, B, L\right)$, traverse through $B^{\prime} s$
$\delta\left(q_{2}, a\right)=\left(q_{2}, a, L\right)$, traverse a's
$\delta\left(q_{2}, A\right)=\left(q_{0}, A, R\right)$, right most A is found
$\delta\left(q_{0}, B\right)=\left(q_{3}, B, R\right)$, a's are exhausted
$\delta\left(q_{3}, B\right)=\left(q_{3}, B, R\right)$, scan through B 's
$\delta\left(q_{3}, \#\right)=\left(q_{4}, \#, L\right)$, accept w when b 's are over

Representation of a Configuration

Example: of language recognition Dry Run

- TM to accept: $a^{n} b^{n}, n \geq 1$
- Let $w=a a b b \vdash q_{0} a a b b \vdash A q_{1} a b b \#$
$\vdash A a q_{1} b b \# \vdash A a q_{2} B b \# \vdash A q_{2} a B b \#$
$\vdash q_{2} A a B b \# \vdash A q_{0} a B b \#$
$\vdash A A q_{1} B b \# \vdash A A B q_{1} b \# \vdash A A q_{2} B B \#$
$\vdash A q_{2} A B B \# \vdash A A q_{0} B B \#$
$\vdash A A B q_{3} B \# \vdash A A B B q_{3} \# \vdash A A B q_{4} B \#$

Acceptors v/s deciders

- Let M is $T M$.
- Three possibilities occur on a given input w :
- M eventually enters $q_{\text {acc }}$ and therefore halts and accepts. $w \in L(M)$
- M eventually enters $q_{r e j}$ or crashes somewhere. M rejects w, i.e., $w \notin L(M)$
- M never halts its computation and is caught up in an infinite loop. In this case w is neither accepted nor rejected. However, any string not explicitly accepted is considered to be outside the accepted language. $w \notin L(M)$
- decider: M never enters infinite loop.

