Quiz # 2, B.Tech. V Sem 2011-12, IITR Theory of Computation

Your Roll no:..

Instructions:

- i. Tick the correct answer. Time: 30 minutes.
- ii. Correct answer = 2 marks, wrong answer = $-\frac{1}{2}$ marks.
- 1. What is *Space Complexity* of multiplying *x* and *y* binary strings using standard TM? Assume that |x| = m, |y| = n.

2. What is *Time Complexity* of recognizing $L = \{w^R w w^R | w \in \{a, b\}^*\}$ on 3-tape TM? Write brief steps.

- 3. Let $G = (\{S\}, \{a, b\}, P, S)$ be a CFG where P is $S \to aSb|SS|\varepsilon$. Which of the following is true?
 - (a) G is not ambiguous
 - (b) There exists $x, y \in L(G)$ such that $xy \notin L(G)$.
 - (c) There is deterministic PDA that accepts L(G)
 - (d) We cannot find deterministic PDA that accepts L(G).
- 4. Given TM M with $\Gamma = \{0, 1, B\}, \Sigma = \{0, 1\}, B$ is for end of string, and δ is:

	Input	Input	input
	0	1	В
q_0	$(q_1, 1, R)$	$(q_1, 1, R)$	Halt
q_1	$(q_1, 1, R)$	$(q_0, 1, L)$	(q_0, B, L)

Which of the following is true?

- (a) *M* cannot halt on any string $(0+1)^+$ (b) *M* cannot halt on any string $(00+1)^+$
- (c) *M* halts on any string ending in 00 (d) *M* halts on any string ending in 1
- 5. Let N_f and N_p denote the classes of languages accepted by non-deterministic finite automata and non-deterministic push-down automata, respectively. Let D_f and D_p denote the classes of languages accepted by deterministic finite automata and deterministic push-down automata respectively. Which one of the following is TRUE?
 - (a) $D_f \subset N_f$ and $D_p \subset N_p$ (c) $D_f = N_f$ and $D_p = N_p$
 - (b) $D_f \subset N_f$ and $D_p = N_p$ (d) $D_f = N_f$ and $D_p \subset N_p$
- 6. Consider the languages: $L_1 = \{a^n b^n c^m | n, m > 0\}$ and $L_2 = \{a^n b^m c^m | n, m > 0\}$. Which one of the following statements is FALSE?
 - (a) $L_1 \cap L_2$ is a context-free language (b) $L_1 \cup L_2$ is a context-free language
 - (c) L_1 and L_2 are context-free languages (d) $L_1 \cap L_2$ is recursively enumerable
- 7. Consider the languages: $L_1 = \{ww^R | w \in \{0,1\}^*\}, L_2 = \{w\#w | w \in \{0,1\}^*\}$, where # is a special symbol, $L_3 = \{ww | w \in \{0,1\}^*\}$. Which one of the following is TRUE?
 - (b) L_2 is a deterministic CFL (a) L_1 is a deterministic CFL
 - (c) L_3 is a CFL, but not a deterministic CFL (d) L_3 is a deterministic CFL
- 8. Let L_1 be a recursive language. Let L_2 and L_3 be languages that are recursively enumerable but not recursive. Which of the following statements is not necessarily true?
 - (A) $L_2 L_1$ is recursively enumerable (B) $L_1 - L_3$ is recursively enumerable (C) $L_2 \cap L_1$ is recursively enumerable (D) $L_2 \cup L_1$ is recursively enumerable