Quiz \# 2, B.Tech. V Sem 2011-12, IITR
 Theory of Computation

Your Roll no:..

Instructions:

i. Tick the correct answer.

Time: 30 minutes.
ii. Correct answer $=2$ marks, wrong answer $=-\frac{1}{2}$ marks.

1. What is Space Complexity of multiplying x and y binary strings using standard TM? Assume that $|x|=m,|y|=n$.

Ans. The length of x and y are m and n, hence length of $m \times n$ is $m * n$. Thus maximum space occupied any time is $m * n$, and space complexity is $O(m n)$.
2. What is Time Complexity of recognizing $L=\left\{w^{R} w w^{R} \mid w \in\{a, b\}^{*}\right\}$ on 3-tape TM? Write brief steps.

Ans. Initial head positions are: $h_{1} w^{R} w w^{R}, h_{2} B B, h_{3} B B$

1. Copy $x=w^{R} w w^{R}$ to tape2, and tape3. (Now heads are: $w^{R} w w^{R} h_{1}, w^{R} w w^{R} h_{2}, w^{R} w w^{R} h_{3}$) No. of transitions $=3 w$
2. For each 3-step L move of h_{1}, have the one step L move of h_{2}, and h_{3}, till h_{1} is extreme left. (Now heads are: $h_{1} w^{R} w w^{R}, w^{R} w h_{2} w^{R}, w^{R} w h_{3} w^{R}$)No. of transitions $=3 w$
3. Compare: move $h_{1}, \mathrm{R}, h_{2} \mathrm{~L}$, and $h_{3} \mathrm{R}$, and compare. No. of transitions=w.
if $\left|w^{R} w w^{R}\right|=n=3|w|$, then time complexity $=n+n+\frac{1}{3} n=2 \frac{1}{3} n=O(n)$.
4. Let $G=(\{S\},\{a, b\}, P, S)$ be a CFG where P is $S \rightarrow a S b|S S| \varepsilon$. Which of the following is true?
(a) G is not ambiguous
(b) There exists $x, y \in L(G)$ such that $x y \notin L(G)$.
(c) There is deterministic PDA that accepts $L(G)$
(d) We cannot find deterministic PDA that accepts $L(G)$.

Ans: A is not correct because for same expression there are more than syntax trees. Because of ε-transition, deterministic PDA is not possible. Hence (D).

We may take derivations: $S \Rightarrow a S b \Rightarrow a S S b \Rightarrow a a S b a S b b \Rightarrow a a b a b b$. Can we detemine this string using deterministic PDA? NO.
4. Given $T M M$ with $\Gamma=\{0,1, B\}, \Sigma=\{0,1\}, B$ is for end of string, and δ is:

	Input	Input	input
	0	1	B
q_{0}	$\left(q_{1}, 1, R\right)$	$\left(q_{1}, 1, R\right)$	Halt
q_{1}	$\left(q_{1}, 1, R\right)$	$\left(q_{0}, 1, L\right)$	$\left(q_{0}, B, L\right)$

Which of the following is true?
(a) M cannot halt on any string $(0+1)^{+}$
(b) M cannot halt on any string $(00+1)^{+}$
(c) M halts on any string ending in 00
(d) M halts on any string ending in 1

Ans. A, B are both true.
5. Let N_{f} and N_{p} denote the classes of languages accepted by non-deterministic finite automata and non-deterministic push-down automata, respectively. Let D_{f} and D_{p} denote the classes of languages accepted by deterministic finite automata and deterministic push-down automata respectively. Which one of the following is TRUE?
(a) $D_{f} \subset N_{f}$ and $D_{p} \subset N_{p}$
(c) $D_{f}=N_{f}$ and $D_{p}=N_{p}$
(b) $D_{f} \subset N_{f}$ and $D_{p}=N_{p}$
(d) $D_{f}=N_{f}$ and $D_{p} \subset N_{p}$

Ans. $L(D F A)$ and $L(N F A)$ are equal as they recognize the same language. Some languages which are recognized by NPDA but they cannot be recognized by DPDA. Thus, $\mathrm{L}(\mathrm{PDA}$) is proper subset of L(NPDA). Ans. (D).
6. Consider the languages: $L_{1}=\left\{a^{n} b^{n} c^{m} \mid n, m>0\right\}$ and $L_{2}=\left\{a^{n} b^{m} c^{m} \mid n, m>0\right\}$. Which one of the following statements is FALSE?
(a) $L_{1} \cap L_{2}$ is a context-free language
(b) $L_{1} \cup L_{2}$ is a context-free language
(d) $L_{1} \cap L_{2}$ is recursively enumerable
(c) L_{1} and L_{2} are context-free languages

Ans. C and D are false statements.
7. Consider the languages: $L_{1}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}, L_{2}=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$, where $\#$ is a special symbol, $L_{3}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Which one of the following is TRUE?
(a) L_{1} is a deterministic CFL
(b) L_{2} is a deterministic CFL
(c) L_{3} is a CFL, but not a deterministic CFL
(d) L_{3} is a deterministic CFL

Ans. B: dterminimistic CFL.
8. Let L_{1} be a recursive language. Let L_{2} and L_{3} be languages that are recursively enumerable but not recursive. Which of the following statements is not necessarily true?
(A) $L_{2}-L_{1}$ is recursively enumerable
(B) $L_{1}-L_{3}$ is recursively enumerable
(C) $L_{2} \cap L_{1}$ is recursively enumerable
(D) $L_{2} \cup L_{1}$ is recursively enumerable

Ans. C.

