## B.tech. IV Sem (CSE), 2018-19

Theory of Computation, Assignment # 1

January 21, 2019

## Attempt any five questions.

- 1. Define a Finite Automaton. How you justify a modern computer as a Finite Automata.
- 2. Describe the application of FA in building Lexical Analyzer for compilers.
- 3. Why a FA is deterministic? Justify your answer.
- 4. For the alphabet set  $\Sigma = \{a, b\}$  construct DFAs for each of the following languages.
  - (a) All strings with exactly one a.
  - (b) All strings with at least one a.
  - (c) All strings with no more than three b's.
- 5. Describe the language accepted by the automaton corresponding to the transition diagram given in figure 1. Also, give its regular expression.



Figure 1: DFA.

- 6. Construct the deterministic finite automaton for each of the following languages:
  - (a)  $\{w \mid w \in \{a,b\}^* \text{ and length of } w \text{ is greater than } 3\}.$
  - (b)  $\{w \mid w \in \{a,b\}^* \text{ and every run of } a \text{ has even length} \}$ .
  - (c)  $\{w \mid w \in \{a,b\}^* \text{ and number of } as \text{ and } bs \text{ are even in } w\}.$
- 7. Find the finite automata for each of the following regular expressions:
  - (a)  $aa^*bb^*cc^*$
  - (b)  $(aba^*ba^*b)^*$
  - (c)  $a^*b + (b^*a)^*$
  - (d)  $(aaa)^*b + (aa)^*b$
- 8. Show that for a DFA, for every  $q \in Q$ ,  $a \in \Sigma$ ,  $\delta(q, a) = q$ , prove that  $\delta^*(q, x) = q$ , for every  $x \in \Sigma^*$ .
- 9. Show that there cannot be a DFA of less than four states which can recognize the language,

 $\{w \in \{a,b\}^* \mid w \text{ contains even number of } a \text{'s and } b \text{'s} \}.$ 

- 10. For  $x, y \in \Sigma^*$ , prove that for any DFA  $\delta(q, xy) = \delta(\delta(q, x), y)$ , where  $\delta$  is transition function.
- 11. Design a finite automaton for controller for a swing door with a front pad and rear pad. There are two states corresponding to door on and closed, and four possible inputs: front, rear, neither, and both.

Submission deadline: 28-01-2019. Write your by hand on A4 or register paper, and then scan and submit through ERP