### Turing Recognizable Languages

KR Chowdhary Professor & Head Email: kr.chowdhary@acm.org

Department of Computer Science and Engineering MBM Engineering College, Jodhpur

October 27, 2010

# Enumerating TMs

- We can enumerate Turing machines, by encoding each one of them, say:
- TM-5012847892 = Balancing parenthesis
- TM-5025672893 = Even number of 1s
- TM-5256342939 = Universal TM
- TM-56239892122 = Windows XP
- . . .

Thus, a TM can be described by a set of 0s and 1s. This set forms a languages,

L = { 000101001010101000, (Turing machine1) 000101011110101000, (Turing machine2) 0001110101000010101000, (Turing machine ...) ... }

L is countable set of infinite number of strings (how?)

# Enumerating TMs

 There is one-to-one correspondence between elements of the set of TMs and the natural numbers. Let S be set of strings. An enumeration procedure for S is a TM that generates all strings of S one-by-one, each in finite time. s<sub>1</sub>, s<sub>2</sub>, ··· ∈ S.



s1, s2, s3, ... are in set S.

• If for a set there is a an enumeration procedure, then the set is countable.

Ex.: Prove that set of all the strings  $\{a, b, c\}$  is countable

Put in proper order:

Produce all strings of length 1

produce all strings of length 2, and so on

3/8

Theorem Set of All the Turing machines is countable.

Proof.

- Any Turing machine can be encoded with binary strings of 0's and 1's.
- Find an enumeration procedure for the set of TMs.

#### • Repeat:

- Generate the next binary string of 1s and 0s in proper order
- Check if the string describes a Turing machine(an encoding of some TM).
  - i if yes: print the string on output tape
  - ii if no, ignore it.

## Countable and uncountable sets

- Let a set of strings  $S = \{s_1, s_2, \dots, \}$  is countable. The  $s_i$  are generated through enumerating procedure.
- Power set for S is  $2^S$ , is not countable(?).
- let the elements of power set be:
  {s<sub>1</sub>}, {s<sub>2</sub>, s<sub>3</sub>}, {s<sub>1</sub>, s<sub>3</sub>, s<sub>4</sub>}, etc. We can encode the elements of power set as binary strings of 1s and 0s:

| Power set             | Power set           | Encoding              |                       |            |            |  |
|-----------------------|---------------------|-----------------------|-----------------------|------------|------------|--|
| element               |                     | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> | <i>s</i> 3 | <i>S</i> 4 |  |
| $t_1$                 | $\{s_1\}$           | 1                     | 0                     | 0          | 0          |  |
| <i>t</i> <sub>2</sub> | $\{s_2, s_3\}$      | 0                     | 1                     | 1          | 0          |  |
| t3                    | $\{s_1, s_3, s_4\}$ | 1                     | 0                     | 1          | 1          |  |

### Power set is uncountable

- Let us assume (for contradiction) that power set is countable. Then we can enumerate its elements
- Take the power set elements whose bits are the complement of diagonal

| Power set             | Encoding              |                       |            |            |  |
|-----------------------|-----------------------|-----------------------|------------|------------|--|
| element               | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> | <i>s</i> 3 | <i>S</i> 4 |  |
| $t_1$                 | 1                     | 0                     | 0          | 0          |  |
| <i>t</i> <sub>2</sub> | 0                     | 1                     | 1          | 0          |  |
| t <sub>3</sub>        | 1                     | 0                     | 1          | 1          |  |

The complement is: 000 (a binary complement of diagonal). This new element must be some element  $t_i$  of power set (since we assume that P(S) is enumerated). However, that is impossible. Hence, we conclude that power set is uncountable.

## Countable v/s uncountable

- For Σ = {a,b}, Σ\* is countable, because Σ\* can be enumerated. Σ\* = {ε, a, b, aa, ab, ba, bb, aaa, aab,...}, which maps to {0, 1, 2, 3, ...}
- However, the languages {L<sub>1</sub>, L<sub>2</sub>,...} that can be constructed from Σ\*, are subsets of 2<sup>Σ\*</sup>; are uncountably infinite.
- All the Turing machines {*M*<sub>1</sub>, *M*<sub>2</sub>,...} can be enumerated (ref. representation of all TMs), which is countably infinite.
- Conclusion: There are more languages than TMs, hence for some languages there does ot exist TMs. In fact they are not Turing recognizable.