Turing Recognizable Languages

KR Chowdhary
Professor \& Head
Email: kr.chowdhary@acm.org
Department of Computer Science and Engineering MBM Engineering College, Jodhpur

October 27, 2010

Enumerating TMs

- We can enumerate Turing machines, by encoding each one of them, say:
- TM-5012847892 = Balancing parenthesis
- TM-5025672893 = Even number of 1s
- TM-5256342939 = Universal TM
- TM-56239892122 = Windows XP

Thus, a TM can be described by a set of 0 s and 1 s . This set forms a languages,
$L=\{00010100101010101000$, (Turing machine1) 00010101111010101000, (Turing machine2) 00011101010100010101000, (Turing machine ...) ... \}
L is countable set of infinite number of strings (how?)

Enumerating TMs

- There is one-to-one correspondence between elements of the set of TMs and the natural numbers. Let S be set of strings. An enumeration procedure for S is a TM that generates all strings of S one-by-one, each in finite time. $s_{1}, s_{2}, \cdots \in S$.

- If for a set there is a an enumeration procedure, then the set is countable.
Ex.: Prove that set of all the strings $\{a, b, c\}$ is countable Put in proper order:
Produce all strings of length 1 produce all strings of length 2 , and so on

Enumerating TMs

Theorem
Set of All the Turing machines is countable.
Proof.

- Any Turing machine can be encoded with binary strings of 0 's and 1's.
- Find an enumeration procedure for the set of TMs.

Enumeration procedure:

- Repeat:
(1) Generate the next binary string of 1 s and 0 s in proper order
(2) Check if the string describes a Turing machine(an encoding of some TM).
i if yes: print the string on output tape
ii if no, ignore it.

Countable and uncountable sets

- Let a set of strings $S=\left\{s_{1}, s_{2}, \ldots,\right\}$ is countable. The s_{i} are generated through enumerating procedure.
- Power set for S is 2^{S}, is not countable(?).
- let the elements of power set be:
$\left\{s_{1}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{3}, s_{4}\right\}$, etc. We can encode the elements of power set as binary strings of 1 s and 0 s :

Power set	Power set	Encoding				
element		s_{1}	s_{2}	s_{3}	s_{4}	\ldots
t_{1}	$\left\{s_{1}\right\}$	1	0	0	0	\ldots
t_{2}	$\left\{s_{2}, s_{3}\right\}$	0	1	1	0	\ldots
t_{3}	$\left\{s_{1}, s_{3}, s_{4}\right\}$	1	0	1	1	\ldots

Power set is uncountable

- Let us assume (for contradiction) that power set is countable. Then we can enumerate its elements
- Take the power set elements whose bits are the complement of diagonal

Power set	Encoding				
element	s_{1}	s_{2}	s_{3}	s_{4}	\ldots
t_{1}	$\mathbf{1}$	0	0	0	\ldots
t_{2}	0	$\mathbf{1}$	1	0	\ldots
t_{3}	1	0	$\mathbf{1}$	1	\ldots

The complement is: 000 (a binary complement of diagonal). This new element must be some element t_{i} of power set (since we assume that $\mathrm{P}(\mathrm{S})$ is enumerated). However, that is impossible. Hence, we conclude that power set is uncountable.

Countable v/s uncountable

- For $\Sigma=\{a, b\}, \Sigma^{*}$ is countable, because Σ^{*} can be enumerated. $\Sigma^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$, which maps to $\{0,1,2,3, \ldots\}$
- However, the languages $\left\{L_{1}, L_{2}, \ldots\right\}$ that can be constructed from Σ^{*}, are subsets of $2^{\Sigma^{*}}$; are uncountably infinite.
- All the Turing machines $\left\{M_{1}, M_{2}, \ldots\right\}$ can be enumerated (ref. representation of all TMs), which is countably infinite.
- Conclusion: There are more languages than TMs, hence for some languages there does ot exist TMs. In fact they are not Turing recognizable.

