Universal Turing Machines

KR Chowdhary
Professor \& Head
Email: kr.chowdhary@acm.org
Department of Computer Science and Engineering MBM Engineering College, Jodhpur

October 8, 2010

TM Simulations

- A 3-tape TM can be simulated by a standard Turing machine

TM Simulations

- A 3-tape TM can be simulated by a standard Turing machine
- a 2D-Tm can be simutaed by a standard TM

TM Simulations

- A 3-tape TM can be simulated by a standard Turing machine
- a 2D-Tm can be simutaed by a standard TM
- A NDTM can be simulated by a standatd TM

TM Simulations

- A 3-tape TM can be simulated by a standard Turing machine
- a 2D-Tm can be simutaed by a standard TM
- A NDTM can be simulated by a standatd TM
- Can a TM be simulated by a TM?- YES

TM Simulations

- A 3-tape TM can be simulated by a standard Turing machine
- a 2D-Tm can be simutaed by a standard TM
- A NDTM can be simulated by a standatd TM
- Can a TM be simulated by a TM?- YES
- Can one Turing machine simulate every TM?

Universal TM

Input $=M, w$, Output $=$ the output produced when M runs when input is w. This machine is Universal Turing machine (UTM) U.

Universal TM

Input $=M, w$, Output $=$ the output produced when M runs when input is w. This machine is Universal Turing machine (UTM) U.

- A UTM can be designed to simulate the computations of an arbitrary TM M. To do so, input to UTM must contain representation of both - machine M and string w processed by M.

TM Simulations..

Let M that accepts by halting.

TM Simulations..

Let M that accepts by halting.
We can present a UTM U for this as follows:

TM Simulations..

Let M that accepts by halting.
We can present a UTM U for this as follows:

- Input $=R(M) w$, where $R(M)$ is representation of M

TM Simulations..

Let M that accepts by halting.
We can present a UTM U for this as follows:

- Input $=R(M) w$, where $R(M)$ is representation of M
- Output1: Accept (indicates that M halts with input w), output2: loops, i.e., M does not halt with input w, i.e. computation of does not terminate

TM Simulations..

Let M that accepts by halting.
We can present a UTM U for this as follows:

- Input $=R(M) w$, where $R(M)$ is representation of M
- Output1: Accept (indicates that M halts with input w), output2: loops, i.e., M does not halt with input w, i.e. computation of does not terminate
- The machine U is called universal TM, as computation of any Turing machine can be simulated by U.

Step1: design a string representation of a TM M

Because of the ability to encode arbitrary symbols as strings over $\{0,1\}$, we consider Turing machine with inputs $\{0,1\}$ and tape symbols $\Gamma=\{0,1, \#\}$

Step1: design a string representation of a TM M

Because of the ability to encode arbitrary symbols as strings over $\{0,1\}$, we consider Turing machine with inputs $\{0,1\}$ and tape symbols $\Gamma=\{0,1, \#\}$

- The states of M are assumed to be $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$

Step1: design a string representation of a TM M

Because of the ability to encode arbitrary symbols as strings over $\{0,1\}$, we consider Turing machine with inputs $\{0,1\}$ and tape symbols $\Gamma=\{0,1, \#\}$

- The states of M are assumed to be $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$
- TM M is defined by its transition function:

Step1: design a string representation of a TM M

Because of the ability to encode arbitrary symbols as strings over $\{0,1\}$, we consider Turing machine with inputs $\{0,1\}$ and tape symbols $\Gamma=\{0,1, \#\}$

- The states of M are assumed to be $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$
- TM M is defined by its transition function: $\delta\left(q_{i}, a\right)=\left(q_{j}, b, d\right) ; q_{i}, q_{j} \in Q ; \quad a, b \in \Gamma ; d \in\{L, R\}$

Encoding of elements of M

Symbol	Encoding
0	1
1	11
$\#$	111
q_{0}	1
q_{1}	11
\ldots	\ldots
q_{n}	1^{n+1}
L	1
R	11

Encoding of elements of M

Symbol	Encoding
0	1
1	11
$\#$	111
q_{0}	1
q_{1}	11
\ldots	\ldots
q_{n}	1^{n+1}
L	1
R	11

Encoding of elements of M

Symbol	Encoding
0	1
1	11
$\#$	111
q_{0}	1
q_{1}	11
\ldots	\cdots
q_{n}	1^{n+1}
L	1
R	11

- let en(z) denote the encoding of z. Hence, Transition $\delta\left(q_{i}, a\right)=\left(q_{j}, b, d\right)$ is encoded by string $e n\left(q_{i}\right) 0 e n(a) 0 e n\left(q_{j}\right) 0 e n(b) 0 e n(d)$. 0 separates the components of δ.

Encoding of elements of M..

- A representation of machine M is constructed from encoded transitions. Two consecutive 0s separate transitions. Beginning and end of representation are defined by three 0s.

Encoding of elements of M..

- A representation of machine M is constructed from encoded transitions. Two consecutive 0s separate transitions. Beginning and end of representation are defined by three 0s.

Encoding of elements of M..

- A representation of machine M is constructed from encoded transitions. Two consecutive 0s separate transitions. Beginning and end of representation are defined by three 0s.

$$
\begin{array}{ll}
\text { Consider the Transitions: } & \\
\text { Transition } & \text { Encoding } \\
\delta\left(q_{0}, \#\right)=\left(q_{1}, \#, R\right) & 101110110111011 \\
\delta\left(q_{1}, 0\right)=\left(q_{0}, 0, L\right) & 1101010101 \\
\delta\left(q_{1}, 1\right)=\left(q_{2}, 1, R\right) & 110110111011011 \\
\delta\left(q_{2}, 1\right)=\left(q_{0}, 1, L\right) & 1110110101101
\end{array}
$$

- The machine M is represented by string: 000101110110111011

Encoding of elements of M..

- A representation of machine M is constructed from encoded transitions. Two consecutive 0s separate transitions. Beginning and end of representation are defined by three 0s.

$$
\begin{array}{ll}
\text { Consider the Transitions: } & \\
\text { Transition } & \text { Encoding } \\
\delta\left(q_{0}, \#\right)=\left(q_{1}, \#, R\right) & 101110110111011 \\
\delta\left(q_{1}, 0\right)=\left(q_{0}, 0, L\right) & 1101010101 \\
\delta\left(q_{1}, 1\right)=\left(q_{2}, 1, R\right) & 110110111011011 \\
\delta\left(q_{2}, 1\right)=\left(q_{0}, 1, L\right) & 1110110101101
\end{array}
$$

- The machine M is represented by string: 000101110110111011 00110101010100110110111011011001110110101101000

Simulation of M on Universal TM U

Verification of representation of M :

Simulation of M on Universal TM U

Verification of representation of M :

- TM can be constructed to check whether an arbitrary string $u \in\{0,1\}^{*}$ is encoding of deterministic TM M. Computations examines whether 000 is prefix, followed by finite sequences of encoded transitions are separated by 00 s , then finally 000 . (This is not the w to be recognized !!).

Simulation of M on Universal TM U

Verification of representation of M :

- TM can be constructed to check whether an arbitrary string $u \in\{0,1\}^{*}$ is encoding of deterministic TM M. Computations examines whether 000 is prefix, followed by finite sequences of encoded transitions are separated by 00 s , then finally 000 . (This is not the w to be recognized !!).
- M is deterministic if $Q \times \Gamma$ in every encoded transition is unique.

Simulation of M on Universal TM U

Verification of representation of M :

- TM can be constructed to check whether an arbitrary string $u \in\{0,1\}^{*}$ is encoding of deterministic TM M. Computations examines whether 000 is prefix, followed by finite sequences of encoded transitions are separated by 00 s , then finally 000 . (This is not the w to be recognized !!).
- M is deterministic if $Q \times \Gamma$ in every encoded transition is unique.
3-tape Deterministic TM U:

Simulation of M on Universal TM U

Verification of representation of M :

- TM can be constructed to check whether an arbitrary string $u \in\{0,1\}^{*}$ is encoding of deterministic TM M. Computations examines whether 000 is prefix, followed by finite sequences of encoded transitions are separated by 00 s , then finally 000 . (This is not the w to be recognized !!).
- M is deterministic if $Q \times \Gamma$ in every encoded transition is unique.

3-tape Deterministic TM U:

- Tape-1 holds $R(M) w$. Tape-3 simulates computations of of M for input w. Tape-2 as working tape.

Simulation of TM M on U

(3) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.

Simulation of TM M on U

(1) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape- 3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.

Simulation of TM M on U

(1) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape- 3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape-2.

Simulation of TM M on U

(3) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape-3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape- 2 .
(3) Transition of M is simulated on tape-3. The transition is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.

Simulation of TM M on U

(1) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape-3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape-2.
(1) Transition of M is simulated on tape-3. The transition is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.
a Tape- 1 is scanned for a and q_{i} as first two components of a transition. If not found, U halts by accepting input.

Simulation of TM M on U

(1) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape-3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape-2.
(1) Transition of M is simulated on tape-3. The transition is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.
a Tape- 1 is scanned for a and q_{i} as first two components of a transition. If not found, U halts by accepting input.
b If tape- 1 has encoded information for above, then

Simulation of TM M on U

(1) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape-3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape-2.
(1) Transition of M is simulated on tape-3. The transition is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.
a Tape- 1 is scanned for a and q_{i} as first two components of a transition. If not found, U halts by accepting input.
b If tape- 1 has encoded information for above, then
i q_{i} replaced by q_{j} on tape- 2 .

Simulation of TM M on U

(3) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape-3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape-2.
(1) Transition of M is simulated on tape-3. The transition is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.
a Tape- 1 is scanned for a and q_{i} as first two components of a transition. If not found, U halts by accepting input.
b If tape- 1 has encoded information for above, then
i q_{i} replaced by q_{j} on tape- 2 .
ii b is written on tape 3, and tape head on tape-3 is moved for direction given in d.

Simulation of TM M on U

(3) If input u is not of the form $R(M) w$ for deterministic TM M and string w on tape- 1 , the U moves to right forever.
(2) w is written on tape-3 at left most square, with tape head at position $1 . \Rightarrow$ tape- 3 is initial configuration of M with input w.
(3) Encoding of q_{0},i.e., 1 is written tape-2.
(1) Transition of M is simulated on tape-3. The transition is determined by symbol scanned on tape-3 and state encoded on tape-2. Let these are a and q_{i}.
a Tape- 1 is scanned for a and q_{i} as first two components of a transition. If not found, U halts by accepting input.
b If tape- 1 has encoded information for above, then
i q_{i} replaced by q_{j} on tape- 2 .
ii b is written on tape 3, and tape head on tape-3 is moved for direction given in d.
(3) Go back to step 4. and carry on computation bv

