TOC-Assignment # 1 (Topics: Preliminaries, Regex)

- 1. If it is given that x > 4, then show that $2^x \ge x^2$.
- 2. Prove that $(uv)^R = v^R u^R$, where u, v are strings on some alphabets, and R stands for reversal of string.
- 3. Which of the following functions are computable?
 - a. $S = \{x | x \notin x\}$
 - b. $f: x \to \text{if } odd(x)$ then print x else x := x + 1.
 - c. $f: x \to succ(x)$.
- 4. If $f: A \to B, g: b \to C$, then prove the following:
 - a. If f and g are both *injection*, then $g \circ f$ is also *injection*.
 - b. If f and g are both *bijection*, then $g \circ f$ is also *bijection*.
- 5. Can there be an algorithm that can find out whether a given \mathbf{C} program halts on input x? Justify your answer for Yes/No.
- 6. Given the languages $L_1 = \{\varepsilon, 0, 1\}$ and $L_2 = \{\varepsilon, 01, 11\}$, find out $L_1 \cup L_2, L_1 \cap L_2, L_1 \circ L_2, L_1^*, \bar{L_1}$.
- 7. List any number of problems which are unsolvable, with brief description for each.
- 8. For $a \in \Sigma$, and three laguages A, L, M on Σ , and n > 1, show that:
 - a. $\{a\} \circ L = \{a\} \circ M \Rightarrow L = M$.
 - b. $A \circ L = A \circ M \Rightarrow L = M$
 - c. $L^* = M^* \Rightarrow L = M$.
 - d. $L^n = m^n \Rightarrow L = M$.
- 9. Which of the following languages are equal?

 $(L \cup M)^*, (L \circ M)^* \circ L, (L^* \cup M^*)^*, (L^* \circ M^*)^*.$

- 10. What is regular expression for $\Sigma = \{0, 1\}$, where each string in the language contains at least one 1.
- 11. Prove that all the finite languages are regular.
- 12. What are the regular expressions for following, for $\Sigma = \{a, b\}$.
 - a. All strings have no more that two a.

- b. All strings have even counts of a or b.
- c. All strings are beginning and ending wit a and have at least one b.
- d. Length of all the strings are divisible by 4.
- 13. Find the regular expressions corresponding to the following regular sets:
 - a. $\{ab, ac, ad\}$
 - b. $\{ad, ae, af, bd, be, bf, cd, ce, cf, \dots\}$
- 14. if r_1, r_2, r_3 are the regular expressions, then the language corresponding to $r_1(r_2 + r_3)$ is same as that of $r_1r_2 + r_3r_4$.
- 15. What are the regular expressions corresponding to the following?
 - a. Decimal integer with or without sign.
 - b. Decimal float type number
 - c. C language variable representation.