TOC-Assignment \# 1 (Topics: Preliminaries, Regex)

1. If it is given that $x>4$, then show that $2^{x} \geq x^{2}$.
2. Prove that $(u v)^{R}=v^{R} u^{R}$, where u, v are strings on some alphabets, and R stands for reversal of string.
3. Which of the following functions are computable?
a. $S=\{x \mid x \notin x\}$
b. $f: x \rightarrow$ if $\operatorname{odd}(x)$ then print x else $x:=x+1$.
c. $f: x \rightarrow \operatorname{succ}(x)$.
4. If $f: A \rightarrow B, g: b \rightarrow C$, then prove the following:
a. If f and g are both injection, then $g \circ f$ is also injection.
b. If f and g are both bijection, then $g \circ f$ is also bijection.
5. Can there be an algorithm that can find out whether a given \mathbf{C} program halts on input x ? Justify your answer for Yes/No.
6. Given the languages $L_{1}=\{\varepsilon, 0,1\}$ and $L_{2}=\{\varepsilon, 01,11\}$, find out $L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1} \circ L_{2}, L_{1}^{*}, \overline{L_{1}}$.
7. List any number of problems which are unsolvable, with brief description for each.
8. For $a \in \Sigma$, and three laguages A, L, M on Σ, and $n>1$, show that:
a. $\{a\} \circ L=\{a\} \circ M \Rightarrow L=M$.
b. $A \circ L=A \circ M \nRightarrow L=M$
c. $L^{*}=M^{*} \nRightarrow L=M$.
d. $L^{n}=m^{n} \Rightarrow L=M$.
9. Which of the followng languages are equal?
$(L \cup M)^{*},(L \circ M)^{*} \circ L,\left(L^{*} \cup M^{*}\right)^{*},\left(L^{*} \circ M^{*}\right)^{*}$.
10. What is regular expression for $\Sigma=\{0,1\}$, where each string in the language contains at least one 1.
11. Prove that all the finte languages are regular.
12. What are the regular expressions for following, for $\Sigma=\{a, b\}$.
a. All strings have no more that two a.
b. All strings have even counts of a or b.
c. All strings are beginning and ending wit a and have at least one b.
d. Length of all the strings are divisible by 4.
13. Find the regular expressions corresponding to the following regular sets:
a. $\{a b, a c, a d\}$
b. $\{a d, a e, a f, b d, b e, b f, c d, c e, c f, \ldots\}$
14. if r_{1}, r_{2}, r_{3} are the regular expressions, then the language corresponging to $r_{1}\left(r_{2}+r_{3}\right)$ is same as that of $r_{1} r_{2}+r_{3} r_{4}$.
15. What are the regular expressions corresponging to the following?
a. Decimal integer with or without sign.
b. Decimal float type number
c. C language variable representation.
