
Introduction to Computer Organization
(Cache Memory)

KR Chowdhary
Professor & Head

Email: kr.chowdhary@gmail.com

webpage: krchowdhary.com

Department of Computer Science and Engineering
MBM Engineering College, Jodhpur

November 14, 2013

KR Chowdhary Cache Memory 1/ 30

Introduction to cache

CPU
Cache Main

Memory
Fast Slow

(word
transfer)

(block
transfer)

M1 M2

Figure 1: Memory Hierarchy.

*Speed of CPU v/s Main memory
is typically 10:1
*A high speed Cache memory (M1)
of relatively small size is provided
between main memory (M2) and
CPU forming (M1,M2) hierarchy.
Some mechanism is provided in
cache so that tA ≈ tA1(⇒ cache hit
ratio ≈ 1) .
* Data and instructions are
pre-fetched in cache. Due to
locality of reference, other
instructions/data are likely to be

found cache.
* Cache is usually not visible to
programmers.
* Approach: One can search a
desired address’s word in a cache
for match; and does this for all
locations in cache simultaneously.
*Cache size should be small:
average cost is that of RAM.
Cache should be large enough:
average access time is close to that
of cache.
*VAX 11/780: 8-KB general
purpose cache, Motorola 68020:
256 byte on-chip instruction cache,
8086: 4 / 6 byte instruction cache,
Dual core: L1 : 512KB-2MB, L2 :
1-2MB. Instru. cache v/s GP cache
?

KR Chowdhary Cache Memory 2/ 30

Cache Principle

◮ Principle: When processor
attempts to read a word, its
presence is checked in cache
first. If found, it is delivered to
processor, else a block of fixed
no. of words is read into cache
which contains this word also.
Simultaneously, the word also
is delivered to cpu.

◮ If the word was found in
cache, it is Cache hit else it is
Cache miss.

b

Processor
(CPU)

Cache
M1

Main
Memory

M2

Data Flow with Cache

Figure 2: Cache position.

◮ Cache Design

Let no. of words in RAM =
2n, each addressable by n-bits,
cache size m, RAM of M
blocks. Word size may be 32,
64, . . . bits.

◮ Memory consists fixed length
blocks, each of size K
words(= 2w), total blocks are
M = 2n÷K . Cache has
m = 2r blocks or lines. Each
line has 2w words, each having
a tag field and ctrl-field(to
show if line has been
modified).

◮ tag identifies which particular
blocks are presently in cache.

KR Chowdhary Cache Memory 3/ 30

Cache Principle

Mapping Function: Since lines in
cache, m≪M (blocks in RAM), an
algorithm is needed to map M to
m. That determine what memory
block occupies what cache line.

b
b
b

Memory
address

0

1
2

2n − 1

Block
(K - words)

Block

words
length

RowTag
Line no.

0
1

m− 1

row length
(K- words)

Cache Memory

Main Memory

K = 2wb
b
b

b
b
b

Figure 3: Address mapping.

Cache Read:

addr bus← PC

is
block in
cache?

yes

cpu← word

access main
memory block
having the word

allocate cache line
for block

load memory
block into cache

deliver word
to cpu

end

start

No

Figure 4: Accessing a word.

Three mapping techniques: direct,
associative, set associative.

KR Chowdhary Cache Memory 4/ 30

Direct-Mapped Cache

◮ Each block maps to one and
only one line in cache always.
The mapping is expressed as:

i = j modm

where, j is main memory block
no., i is cache line no., m is
no. of lines in cache.

◮ Words address space = n-bits.
RAM is divided into fixed
length blocks of K = 2w words
each. A word may be equal a
byte. ∴ number of blocks in
RAM = 2n/K =M = 2s (s is
number of bits required to
represent block no.) Let
m = 2r is number of rows in
cache, each of size one block

= 2w words. r is no. of bits
required for row count. The
address space in RAM is:

w-bits

word addr.
in a block

n-bit address for all words

s = (n− w)-bits

Block address

r bits rows-r bits region adr.
adr.

Figure 5: Address Space in RAM.

◮ There is need of some kind of
mapping between 2r rows in
cache v/s 2s no. of blocks in
RAM, as only 2r out of 2s

blocks can be resident in the
cache (a block fits in a row).

KR Chowdhary Cache Memory 5/ 30

Direct-Mapped Cache

◮ Direct mapping: If 2S

mod 2r = 0, then RAM is
divided into 2s ÷ 2r = R
regions as follows:

1. region 0’s blocks nos. :
0, . . . ,2r −1, mapped to
0, . . . ,2r −1 lines of cache,

2. region 1’s blocks nos.:
2r , . . . ,2.2r −1, mapped to
0, . . . ,2r −1 lines of cache,

3. . . .

4. region R−1’s block nos. :
R−1×2r , . . . ,R .2r −1,
mapped to 0, . . . ,2r −1 lines
of the cache.

◮ if 2s is total no. of blocks in

RAM, and 2r is no. of rows in
cache, with row size == block
size=2w words, then i th block
of RAM is mapped to j th row
of cache as follows, so that
j = i mod 2r .

◮ E.g., row 5 in cache will hold
one block (5th block) from
only one of the regions out of
0, . . . ,R− 1.

◮ Thus, a row address
corresponding to r bits from
address field is a direct index
to the block position in a
region.

KR Chowdhary Cache Memory 6/ 30

Direct-Mapped Cache

0 0

b
b
b

region no. 0

region no. 1

region no. R − 1

each block =

block no.

Main memory

Cache memory

2r rows

Tag field=s− r bits

j = i mod 2r, where i

2w bytes

2r

22r

2r − 1

(R − 1)2r

2w bytes

(2rblocks)

block no. in main memory,

mapped to line j in cache.

(2rblocks)

(2rblocks)

b
b
b

Figure 6: Address mapping.

◮ For a match, r bits (i.e., index, having value, say, 1011) is taken
from address field, and the tag field in row no. 21011 of cache is
compared with the s− r bits of address field. If matched (equal),
then it is cache hit, else cache-miss.

KR Chowdhary Cache Memory 7/ 30

Direct Mapped Cache

total address space=2s+w

(s− r) Bits r bits w bits

The r bits acts only as index to a row in cache.

If the tag field of cache macthes with s− r bits of addr space for an index, it is hit.

It requires only one comparision per address in the direct mapped cache.

Figure 7: Address mapping.

◮ Only one comparison required to test for hit, hence it requires simple
circuitry to implement.

◮ Thus, if there is frequent reference to blocks from different regions,
it will cause thrashing, and cache functioning will be inefficient.

KR Chowdhary Cache Memory 8/ 30

Example: Direct Mapped Cache

◮ Let n = 32, = 4GB, w = 4. One block size, K = 24 = 16 bytes. No.
of total blocks=232−4 = 228=256 million. Size of cache = 4MB,
m = 4MB, No. of rows in cache=4MB/16 bytes=222/24 = 218.
Total no. of regions R = (total blocks)/(blocks in cache)=
228/218 = 210.

◮ ∴ n = 32,w = 4, r = 18,s = n−w = 32− 4 = 28.
Tag.=s− r = 28− 18= 10.

◮ For address:

1 0 0 0.1 1 1 1.1 0 0 1.0 1 1 0.1 1 0 0.1 0 0 1.1 0 1 0.0 0 0 1

1 0 9 8.7 6 5 4.3 2 1 0.9 8 7 6.5 4 3 2.1 0 9 8.7 6 5 4.3 2 1 0

block addr=(A0−A3)=1, line addr(A4−A21) =
2r −1 = 0101101100100110102 , region adr. =A31 . . .A22 = tag bits.

◮ This line addr is common for all the 210 regions. Thus, if tag bits in the
cache for line no. 0101101100100110102 matches with the region no.
address A31 . . .A22, then this block (A4−A21) = 0101101100100110102 ,
is in cache else not.

◮ Line in cache is, i = j mod m = (A31−A4)mod218 =
1 0 0 0.1 1 1 1.1 0 0 1.0 1 1 0.1 1 0 0.1 0 0 1.1 0 1 0 mod 218 =
0 1.0 1 1 0.1 1 0 0.1 0 0 1.1 0 1 0

KR Chowdhary Cache Memory 9/ 30

Block Replacement Algorithm

◮ Objective: Every request for
instruction/data fetch should
be met by the cache. Blocks
transfer to cache will improve
the hit. Hit ratio = (total
hits)/(total attempts), which
should be close to unity
(normally > 0.99).

◮ The objective is partly
achieved by algorithm used for
block replacement.

◮ What happens when request
for loading new block in cache
does not find space in cache?

◮ One of the row (block frame
or line) is to be moved back to
main memory to create space

for new block.

◮ Which block should be
removed?:

1. The one which has
remained in the cache for a
longest time, called FIFO
(first in first out) algorithm.

2. The one which was used
long back: LRU (least
recently used) algorithm.

3. The one which is not
frequently used: LFU (least
frequently used) algorithm.

4. Random time: a random
no. is generated, and a
block is selected
correspondingly for removal
(random block selected)).

KR Chowdhary Cache Memory 10/ 30

Block Replacement Algorithm

◮ A block should be written
back to main memory only if
it is changed, otherwise not.

◮ For each row in cache, which
corresponds to a block, a
special bit (sticky bit or dirty
bit, as it is called) is allocated.
If the block is modified, the
bit is set else remain reset.
This bit helps to decide
whether to write this line back
to RAM or not.

How much you have learned in

direct mapped cache?

1. If two same block numbers
from two regions are required
in the cache, what is
consequence? That is, can
they be present same time in
cache?

2. Does the cpu fetch directly
from RAM, if cache is full?

3. A block can be resident at
how many alternate locations
in cache?

KR Chowdhary Cache Memory 11/ 30

Associative Cache Memories

◮ Many storage and retrieval
problems require accessing
certain subfields within a set
of records, what is John’s ID
no. and age?

Name ID number Age

J. Smith 124 24

J. Bond 007 40

A. John 106 50

R. Roe 002 19

J. Doe 009 28

◮ The row 3 has no logical

relationship to Jones, hence to
search entire table using name
sub-field as an address. But,
that is slow.

◮ The associative memory
simultaneously examines all
the entries. They are also
known as content addressable
memories. The subfield chosen
is called tag or key.

◮ Items stored in Associative
memories can be viewed as:

KEY, DATA

KR Chowdhary Cache Memory 12/ 30

Other cache types

Associative mapping Cache

Memories:

◮ A memory block (0, . . . ,2s − 1)
of main memory can go
(mapped to) anywhere (any
line) in cache. This removes
the drawback of Direct
mapped cache. Cache of size
2r lines (r bits) may hold any
2r blocks out of total 2s

blocks of RAM. Larger is size
of cache, the larger no. of
RAM blocks it can hold.

◮ Since any of 2r blocks out of
2s blocks may be there in
cache, we need a tag field of s
bits along with each line of

cache.

◮ Steps to find out if a block no.
b = 2s is in cache:

1. Total address space =
s+w bits, there are 2s

blocks in RAM and each
blocks has 2w words.

2. s bits from address space
are compared (in parallel)
with all the tags of 2r lines
of cache. The line in which
match occurs, holds the
block having required word
corresponding to the
address field. If no match
occurs with any tag, it
shows that it is cache-miss,
and the required block is
fetched from RAM.

KR Chowdhary Cache Memory 13/ 30

Set Associative Cache

Set Associative cache memories:
◮ If there are ten Cache lines to

which a RAM location are
mapped, ten cache entries must
be searched. It takes power, chip
area, and time. Caches with
more associativity has fewer
misses. The rule of thumb:
Doubling the associativity, from
direct mapped to 2-way, or from
2-way to 4-way, has same effect
on hit ratio as doubling cache.

◮ A set-associative scheme is a
hybrid between fully associative
and direct mapped, and a
reasonable compromise between
complex hardware (of fully
associative) v/s simple of
direct-mapped.

◮ solution is set associative cache

◮ For a cache of size 8 lines, and
RAM of 32 blocks. If the cache
is fully associative, the block (say
12 no.) can go in any of the 8
rows of cache.

◮ In a set associative cache, the
block 12 will be mapped to a set
in the cache. Set can be of size
1, 2, 4 rows here. For two sets
(each of 4-rows), block 12 will
be mapped to a set, i.e., {1,2}.
This is called 4-way set
associative cache.

◮ If set is represented by u-bits in
address field, then set no. can be
found by index of u bits. The tag
field of each row = s−u bits.

KR Chowdhary Cache Memory 14/ 30

Set Associative Cache

◮ Compromises: Requires
complex comparison hardware
(to find the correct slot) out
of a small set of slots, instead
of all the slots. Such hardware
is linear in the number of
slots(row in a set).

◮ Flexibility of allowing up to N
cache lines per slot for an
N-way set associative.

◮ Algorithm to find cache hit:

1. Pick up the u bits out of
total (s−u)+u of block
address; use the u bits as
index to reach to 2u th set
in the cache.

2. compare(in parallel) the

s−u bits from address field
with tag fields of all the
2s−u lines in that set.

3. If any match occurs, it is
hit, and line whose tag is
matched, has the required
block. So the byte from
that word is transferred to
CPU. Else, it is miss, and
the block is replaced from
RAM.

Block address

Tag Index

block
offset

(s− u) (u) (w)bits bits bits
compared for hit

selects the set
as an index to the set no.

not required for comparison
as entire block is
either preset or absent in cache

Total word address = s+ w- bits = 2s+w

KR Chowdhary Cache Memory 15/ 30

Analysis

◮ In fully associative, u length is
zero. For a given size of
cache, we observe following:

◮ tag-index boundary moves to
right

⇒ decrease index size u

⇒ increase no. of blocks per
set

⇒ increase size of tag field

⇒ Increase associativity

◮ Direct mapped cache is set
associative with set size =1.

◮ tag-index boundary moves to
left

⇒ increases index size u

⇒ decreases no. of blocks per
set

⇒ decreases in size of tag field

⇒ Decrease in associativity

◮ What are the effect of:

1. Index boundary max left?

2. Index boundary max right?

3. How far it can go left/right?

4. What is best position of index
boundary?

KR Chowdhary Cache Memory 16/ 30

Write policy

◮ When new block is to be
fetched into cache, and there
is no space in cache to load
that block, there is need to
create space in cache. For this
one of the old block is to be
lifted off as per the algorithms
discussed earlier.

◮ if a line or block frame is not
modified, then it may be over
written, as it does not require
to update into RAM.

◮ if the block is modified in
RAM (possible when multiple
processors with multiple
caches exist or it is modified
by device) then cache is
invalid.

◮ One of the technique to solve
this problem is called write
through, which ensures that
main memory is always valid.
Consequently if any change
has taken place, it should be
updated into RAM
immediately.

- disadv: Wastage of bandwidth
due to frequent updating of
RAM.

- adv: Easier to implement,
cache is always clean, read
misses (in cache) never lead
write to RAM.

- RAM has most current copy of
data, hence simplifies the data
coherency

KR Chowdhary Cache Memory 17/ 30

Write policy

◮ When write through takes
place, the cpu stalls. To solve
this, the data is written to
buffer, before it goes to RAM.

◮ write back: The cache is
written (updated) into RAM
only when block is to be
removed to create space in
cache and the dirty bit of the
cache line is found set.

- Consumes lesser BW for
writes.

- Suitable for servers (with
multiple processors).

- Good for embedded
applications as it saves power.

◮ Shared memory Architecture

◮ Two main problems with
shared memory system:
performance degradation due
to contention, and coherence
problems.

- Multiple processors are trying
to access the shared memory
simultaneously.

◮ Having multiple copies of
data, spread throughout the
caches, might lead to a
coherence problem.

◮ The copies in the caches are
coherent if they are all equal
to the same value.

KR Chowdhary Cache Memory 18/ 30

Cache coherence

◮ Coherence(def.): A sticking or
cleaving together; union of
parts of the same body;
cohesion.

- Connection or dependence,
proceeding from the
subordination of the parts of a
thing to one principle or
purpose, as in the parts of a
discourse, or of a system of
philosophy; a logical and
orderly and consistent relation
of parts; consecutiveness.

Coherence of discourse, and a
direct tendency of all the parts
of it to the argument in hand,
are most eminently to be
found in him. –Locke.

Client 1

Client 2

cache 1

cache 2

coherency

M
ain

M
em

o
ry

Figure 8: Multiple caches using a
shared resource.

◮ Client 1 modifies the cache 1,
but does not write to main
memory

◮ client 2 accesses that memory
block which was modified in
the cache 1.

◮ result is invalid data access by
client 2.

KR Chowdhary Cache Memory 19/ 30

Achieving coherence

◮ Principle of coherence: client
1 reads location X, modifies it,
and writes location X. In
between no other processor
accesses X. This results to
memory consistency, else not.

Cache coherence mechanisms:

◮ Directory-based coherence:
Data being shared is placed in
a common directory, which
acts as a filter through which
processor must ask permission
to load an entry from the
RAM to cache. When entry is
changed, the directory updates
or invalidates other caches
with that entry.

◮ Snoopy-bit: Individual cache
monitors address lines of RAM
that have been cached. When
write operation is observed in
a location (X) whose copy is
with cache, the cache
controller invalidates its own
copy of that location (X).

◮ Snarfing: Cache controller
watches both addr and data
lines, and if RAM location (X)
gets modified, the cache
updates its own copy of (X).

◮ The coherence algorithms
above, and others maintains
consistency between all caches
in a system of distributed
shared memory.

KR Chowdhary Cache Memory 20/ 30

Snooping Protocols

◮ They are based on watching
bus activities and carry out
the appropriate coherency
commands when necessary.

◮ Each block has a state
associated with it, which
determines what happens to
the entire contents of the
block.

◮ The state of a block might
change due to: Read-Miss,
Read-Hit, Write-Miss, and
Write-Hit.

◮ Cache miss: Requested block
is not in the cache or it is in
the cache but has been
invalidated.

◮ Snooping protocols differ in
whether they update or

invalidate shared copies in
remote caches in case of a
write operation.

◮ They also differ as from where
to obtain the new data in the
case of a cache miss.

◮ State: Valid, Invalid.

◮ Event: Read-Hit, Read-Miss,
Write-Hit, Write-Miss, Block
replacement.

◮ Write-Invalidate and

Write-Through: Memory is
always consistent with the
most recently updated cache
copy.

◮ Write-Invalidate and

Write-Back
KR Chowdhary Cache Memory 21/ 30

Instruction Cache, data cache, Cache levels

◮ Harvard Cache: Separate data
and instruction caches. Allows
accesses to be less random.

Both have locality of reference
property.

◮ Multilevel cache hierarchy:
Internal cache, external cache,
L1,L2,L3, etc.

◮ Cache Performance: 1. Hit
Ratio, 2. Average memory
access time.

- Average memory access time
= Hit time + Miss rate * Miss

penalty(i.e. no. of clock cycles
missed)

- CPU time = (CPU execution
clock cycles + memory stall
clock cycles) * clock cycle
time

- Miss penalty = (memory stall
cycles / instruction) =
(Misses/Instruction)*(Total
miss latency - Overlapped
Miss latency)

- Overlapped miss latency is due
to out-of-order CPUs
stretching the hit time.

KR Chowdhary Cache Memory 22/ 30

Cache Positioning

◮ A cache is always positioned between RAM and CPU. A programmer
is unaware of its position, because the most part of cache operation
and management is done by hardware and a very small by operating
system.

system busCPU

address

data

address buffer

data buffer

control
ctrl

Cache

Figure 9: Cache positioning

KR Chowdhary Cache Memory 23/ 30

Virtual to Physical Address Translation

◮ In virtual memory system, the logical address needs to be translated
into physical address, before instruction/data is fetched.

◮ For cache memory this may be done by cache itself (in that case
cache shall be fast) or by MMU (the cache will have to wait till the
address translation is done).

C
P

U

cach
e

MMU M
ain

m
em

o
ry

logical address

data

physical

address

Note: Cache need to do address translation

logical address
MMU

cach
e

M
ain

M
em

o
ry

phsical
address

data

C
P

U

Note: cache gets the translated address

Hence, cache design is simple

MMU
memory management
unit

does the job
address translation
from virtual address
to physical addess

◮ In first, cache itself is doing address translation, in second address
translation is done by MMU and cache see only the physical address.

KR Chowdhary Cache Memory 24/ 30

Exercises

1. A block-set-associative cache consists of a total 64-blocks divided
into 4-block sets. The main memory consists of 4096 blocks, each
consisting of 128 words.

1.1 How many bits are there in a main memory address?
1.2 How many bits are there in each of the TAG, SET, and WORD

fields?

2. A 2-way set associative cache memory uses blocks of four words.
The cache can accommodate a total of 2048 words from main
memory. The main memory size if 128K × 32.

2.1 Formulate all the required information to construct the cache
memory.

2.2 What is size of the cache memory?

3. Let us consider a memory hierarchy (main memory + cache) given
by:

◮ Memory size 1 Giga words of 16 bit (word addressed)
◮ Cache size 1 Mega words of 16 bit (word addressed)
◮ Cache block size 256 words of 16 bit

KR Chowdhary Cache Memory 25/ 30

Exercises

Let us consider the following cache structures:
◮ direct mapped cache;
◮ fully associative cache;
◮ 2-way set-associative cache;
◮ 4-way set-associative cache;
◮ 8-way set-associative cache.

◮ Calculate the structure of the addresses for the previous cache
structures;

◮ Calculate the number of blocks for the previous cache structures;
◮ Calculate the number of sets for the previous set associative caches.

4. A cache memory is usually divided into lines. Assume that a
computer has memory of 16 MB, and a cache size of 64 KB. A
cache block can contain 16 bytes.
4.1 Determine the length of the tag, index and offset bits of the address

for: a. Direct Mapped Cache, b. 2-way set Associative Cache, c.
Fully Associative Cache

4.2 Assuming a memory has 32 blocks and a cache consists of 8 blocks.
Determine where the 13th memory block will be found in the cache
for: a. Direct Mapped Cache, b. 2-way Set Associative Cache, c.
Fully Associative Cache

KR Chowdhary Cache Memory 26/ 30

Exercises

5. Consider a machine with a byte addressable main memory of 216

bytes and block size of 8 bytes. Assume that a direct mapped cache
consisting of 32 lines is used with this machine.

5.1 How is the 16-bit memory address divided into tag, line number, and
byte number?

5.2 Into what line would bytes with each of the following addresses be
stored?
0001 0001 1001 1011
1100 0011 0010 0100
1010 1010 0110 1010

5.3 Suppose the byte with address 0001 0001 1001 1011 is stored in the
cache.What are the addresses of the other bytes stored along with
this?

5.4 How many total bytes of memory can be stored in the cache?
5.5 Why is the tag also stored in the cache?

KR Chowdhary Cache Memory 27/ 30

Exercises

6. In a cache-based memory system using FIFO for cache page
replacement, it is found that the cache hit ratio H is unacceptedly
low. The following proposals are made for increasing H :

6.1 Increase the cache page size.
6.2 Increase the cache storage capacity.
6.3 Increase main memory capacity.
6.4 Replace the FIFO policy by LRU.

Analyse each proposal to determine its probable impact on H .

7. Consider a system containing a 128-byte cache. Suppose that
set-associative mapping is used in the cache, and that there are four
sets each containing four lines. The physical address size is 32-bits,
and the smallest addressable unit is the byte.

7.1 Draw a diagram showing the organization of the cache and
indicating how physical addresses are related to cache addresses.

7.2 To what lines of the cache can the address 000010AF16 be assigned?
7.3 If the addresses 000010A16 and FFFF7Axy16 are simultaneously

assigned to the same cache set, what values can the address digits x
and y have?

KR Chowdhary Cache Memory 28/ 30

Exercises

8. Discuss briefly the advantages and disadvantages of the following
cache designs which have been proposed and in some cases
implemented. Identify three nontrivial advantages or disadvantages
(one or two of each) for each part of the problem:
8.1 An instruction cache, which only stores program code but not data.
8.2 A two-level cache, where the cache system forms a two level-memory

hierarchy by itself. Assume that the entire cache subsystem will be
built into the CPU.

9. A set associative cache comprises 64 lines, divided into four-line
sets. The main memory contains 8K block of 64 words each. Show
the format of main memory addresses.

10. A two-way set associative cache has lines of 16 bytes and a total size
of 8 kbytes. The 64-Mbyte main memory is byte addressable. Show
the format of main memory addresses.

11. Consider a 32-bit microprocessor that has an on-chip 16-Kbyte
four-way set associative cache. Assume that the cache has a line
size of four 32-bit words. Draw a block diagram of this cache
showing its organization and how the different address field are used
too determine a cache hit/miss. Where in the cache is the word
from memory location ABCDE8F816 mapped?

KR Chowdhary Cache Memory 29/ 30

Bibliography

John P. Hayes, “Computer Architecture and Organization”, 2nd
Edition, McGraw-Hill, 1988.

William Stalling, “Computer Organization and Architecture”, 8th
Edition, Pearson, 2010.

M. Morris Mano, “Computer System Architecture”, 3rd Edition,
Pearson Education, 2006.

Carl Hamacher, Zvono Vranesic, and Safwat Zaky, “Computer
Organization ”, , 5th edition, McGrawhill Education, 2011. (chapter
7)

KR Chowdhary Cache Memory 30/ 30

