Computer Organization (Number representation & Arithmetics)

KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com

Department of Computer Science and Engineering MBM Engineering College, Jodhpur

November 14, 2013

- Factors for selection of number representation:
 - 1. Types of numbers to be represented: integers, real numbers, complex numbers
 - 2. Range of values to be encountered
 - 3. Precision of numbers required
 - 4. Cost of hardware required to store and process the numbers.
- Formats: Fixed point and floating point format. First have small range and simple hardware requirements. Second has complex hardware and large range.

Binary Numbers

 $-1101.0101_2 = -13.3125_{10}$,

:
$$0.0101_2 = \frac{1}{2} \times 0 + \frac{1}{4} \times 1 + \frac{1}{8} \times 0 + \frac{1}{16} \times 1 = 0.3125_{10}$$

Non-negative integer representation:

8 bit binary represents $0_{10} \dots 255_{10}$. If we consider that the binary number is $A = a_{n-1}a_{n-1}\dots a_0$, then,

$$A = \sum_{i=0}^{n-1} 2^i a_i$$

Signed magnitude representation:

First bit = 0 \Rightarrow +ve, and 1 \Rightarrow -ve. : +18 = 00010010, in 8-bit representation, and -18 = 10010010

$$A = \sum_{i=0}^{n-2} 2^{i} a_{i}, \text{ if } a_{n-1} = 0$$

and

$$A = -\sum_{i=0}^{n-2} 2^i a_i$$
, if $a_{n-1} = 1$.

Drawback of above notation:

1) require consideration of sign and magnitude, 2) there is double notation for $\ensuremath{0}$

 $+ \theta_{10} = 00000000, \, \text{and} \, - \theta_{10} = 10000000, \, \text{hence this notation is never used.}$

Two's Complement representation:

- -ve numbers are represented as two's complement.
- ► Most significant bit is used as sign bit, while other bits are treated differently. For *n*-bit binary number, the range is -2ⁿ⁻¹ to +2ⁿ⁻¹-1.
- Number of representations of zero is one only.
- Addition and subtractions are straight forward. If the result is -ve, then actual result's magnitude is found by obtaining its two's complement.
- ▶ Boundary numbers are complement of each other, i.e., -2^{n-1} and $+2^{n-1}-1$.

Sign magnitude v/s two's complement

Decimal	Sign	Two's
Representation	Magnitude	Complement
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
+0	0000	0000
-0	1000	0000
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	-	1000

IEEE754 Floating-point Format

A decimal number 9760000 can be represented in floating point as 0.97×10^7 , and a fractions 0.0000976 can be represented as 0.976×10^{-4} .

 $\pm S \times B^{\pm E}$

here S is called significand (i.e., mantissa), B is base: 10 for decimal, 2 for binary.

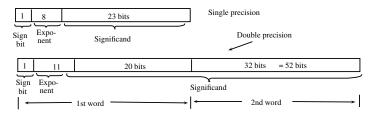


Figure 1: IEEE754 Floating-point Formats

Meaning: $(-1)^{sign} \times (1 + mantissa) \times 2^{expo.-bias}$

IEEE754 Floating-point Format

Biased Representation:

- ► Twos complement exponent is not effective for sorting(e.g. -1 = 1...11, 1=0...01). A bias is introduced so that 0...0 is smallest representable exponent, and 1...1 is largest.
- For k-bit exponent, a bias value of 2^{k−1}−1 is subtracted from the exponent to obtain the true value of exponent.
- For single precision, bias = 127, for double precision it is 1023.
- ▶ Range: SP: -2×10^{-38} to 2×10^{38} , DP: -2×10^{-308} to 2×10^{308}

Fraction:

- ▶ in scientific notations, there is no leading 0, hence an implicit leading 1 is taken in mantissa.
- Significand is taken as 24-bits, the most significant bit is always taken as 1. Thus, 32-bit biased format is

 $\pm 1.bbbb \cdots \times 2^{\pm E}$

where b are binary, 0 and 1.

IEEE754 Floating-point Format

- 23 bits mantissa provides precision equivalent to 8 decimal digits, and 53 bit to 16 digits.
- Extended single precision and double precision:
 - Exponent = 0, mantissa = 0: exact zero. With sign bit, it is ± 0
 - ► Exponent of all 1's and mantissa 0: ∞ is represented (over-flow due to division by 0). With sign bit it is±∞.
 - Exponent = 0, nonzero mantissa is *denormal* numbers. *M* is non-zero 23 bit number. Value is $\pm 0.M \times 2^{-126}$. They are smaller than smallest normal no.
 - ► E = 255, $m \neq 0$: Nan(Not a number format) indicator, e.g. due to operation of 0/0 or $\sqrt{-1}$.
- Exception handling?

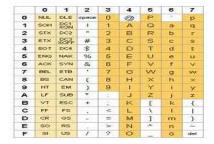
Algorithm-to-add

- 1. Align the two numbers by right shifting the smaller number until it matches the bigger one
- 2. set exponents of both equal to larger
- 3. Add/subtract significands (mantissas)
- 4. Normalize the sum
- 5. Check for overflow or underflow and raise an exception if necessary
- 6. If not normalized repeat from 3

Algorithm-to-multiply

- $1. \ \mbox{Add}$ the exponents and subtract bias
- 2. Multiply significands
- 3. Normalize if necessary
- 4. Check for over-/underflow and raise exception if needed
- 5. Round significand
- 6. If not normalized repeat from step 3
- 7. Set the sign to positive if input signs are equal, negative if they differ

How to divide?


Cannot perform unrolling due to the strict dependency between stages, so

- 1. "Guess" more than one bit at a time using a precomputed Lookup Table with inputs from Remainder and Divisor
- 2. Do not add back the Divisor if the remainder is negative. Instead, add the Dividend to the shifted Remainder in the next step (nonrestoring division)
- 3. Do not store the result of the subtraction if it is negative (nonperforming division)

Arithmetic:

- Let $X = X_s \times B^{X_E}$, and $Y = Y_s \times B^{Y_E}$
- ► Then, $X + Y = (X_S \times B^{X_E Y_E} + Y_S) \times B^{Y_E}$, if $X_E \le Y_E$ $X - Y = (X_S - Y_S \times B^{Y_E - X_E}) \times B^{X_E}$, if $X_E \ge Y_E$ $X \times Y = (X_S \times Y_S) \times B^{X_E + Y_E}$ $X \div Y = \frac{X_S}{Y_S} B^{X_E - Y_E}$
- ► Let $X = 0.3 \times 10^2 = 30$ and $Y = 0.2 \times 10^3 = 200$. Then, $X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^3 = (0.03 + 0.2) \times 10^3 = (0.23) \times 10^3 = 230$.

ASCII and Extended Binary Coded Decimal Interchg Code

Figure 2: ASCII-table

- ASCII encodes 128 specified characters-numbers 0-9, letters a-z, A-Z, some punctuation symbols, some control codes originated with Teletype machines, a blank space, into 7-bit binary integers.
- ASCII represent text in computers, communications equipment, and other devices that use text.
- EBCDIC is 8-bit character encoding used mainly on IBM mainframe and IBM midrange systems

- 1. Express the decimal 0.5, -0.123 as signed 6-bit fractions.
- 2. What is the maximum representation error, *e*, if only 8 significant bits after decimal point are used?
- 3. Assuming a 6-bit exponent, 9-bit normalized fractional mantissa, and exponent is represented in biased format, add the number below:A = 0 100001 111111110, B=0 011111 0010110101. Assume an implicit 1 to the left of mantissa.
- 4. Assuming all numbers are in 2's complement representation, which of the following numbers is divisible by 11111011?
 (A) 11100111 (B) 11100100 (C) 11010111 (D) 11011011

Practice Exercises

- 5. The hexadecimal representation of 657₈ is: (a) 1AF (b) D78 (c) D71 (d) 32F
- 6. What is answer for $(1 + 1 \times 10^{20}) (1 \times 10^{20})$? Justify.
- 7. What is answer for $1 + (1 \times 10^{20} 1 \times 10^{20})$? Justify.
- 8. How the rounding/truncation is carried out by the CPU?
- 9. How overflow can be detected, if the carry bit is not used? I.e., decide it only based on the values of A, B, C = A + B and C = A B. Assume that two's complement is used for negative numbers.
- 10. The range of integers that can be represented by an n bit 2's complement number system is:

(a)
$$-2^{n-1}$$
 to $(2^{n-1}-1)$ (b) $-(2^{n-1}-1)$ to $(2^{n-1}-1)$
(c) -2^{n-1} to 2^{n-1} (d) $-(2^{n-1}+1)$ to $(2^{n-1}-1)$

11. The following is a scheme for floating point number representation using 16 bits.

Let s, e, and m be the numbers represented in binary in the sign, exponent, and mantissa fields, respectively. Then the floating point number represented is: $(-1)^{s}(1+m\times 2^{-9})2^{e-31}$, if the number $\neq 111111$, and 0 otherwise.

What is the maximum difference between two successive real numbers representable in this system?

(A)
$$2^{-40}$$
 (B) 2^{-9} (C) 2^{22} (D) 2^{31}

12. What are the values of expressions $\infty/0, 0/\infty, \infty/\infty.$ Justify your answer.