
COMPILER CONSTRUCTION (Bottom-up & Shift-reduce parsing) Fall 2019

Lecture 18: Aug. 26,28 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

18.1 Bottom-up Parsing

A bottom-up parse corresponds to the construction of a parse tree for an input string
beginning at the leaves (the bottom) and working up towards the root (the top). For
bottom up parsing we will use the grammar given below:

E → E + T | T

T → T × F | F

F → (E) | num | id (18.1)

The sequence of snapshots (a) − (d) in Fig. 18.1 are the steps for parsing the expression
id+ id.

id + id id + id

F

T

id + id

F

T

F

T

EE

id + id

F

T

F

T

E

E

(a) (b) (c) (d)

Figure 18.1: Steps for bottom-up parse for id+ id

In the following we are going to discuss general type of bottom-up parsing, called as the
shift-reduce parsing. Later we will discuss the LR grammar, which are the largest class of
grammars, used for building the shift reduce parsers. The tools, called automatic parser

generators are used for building the parsers. In the immediate next, we will discuss the
basic principles of writing suitable grammars, that can be used with the parser generators.

18-1

18-2 Lecture 18: Aug. 26,28 2019

18.1.1 Reductions

We can think of bottom-up parsing as the process of reducing the given string w (the
sentence) to the start symbol of the grammar. This process is in reverse order of what is
used in top-down parsing. At each reduction step, a substring that matches the body of a
production (right hand side of a production rule) is reduced to the head of the production
rule. The key decisions in the bottom-up parsing are:

1. when to reduce the body of a head by corresponding production, and

2. which among the matching rules to apply out of the given productions,

as the parsing proceeds. For example, in the bottom-up parsing shown in Fig. 18.1, we have
following order of reductions:

id+ id, F + id, T + id, E + id, E + F, E + T, E.

Note that, the application of production rules for carrying out the reduction from id+ id, to
F + id is F → id. Accordingly, the order of rules applied in reducing are: F → id, T → F ,
E → T , F → id, T → F , E → E + T .

18.1.2 Handle Pruning

The bottom-up parsing uses a left-to-right scan of the input, and constructs a right most

derivation in reverse. Note that, when we parsed top-down, the right most part of the
sentence used to be generated at end. In bottom-up, it is reverse, i.e., now the last generated
will be reduced first. The substring that matches the body of a production is called ”handle”,
and its reduction represents one step along the reverse of a right-most derivation. For
example, adding subscripts to the tokens id for clarity, the handles during the parse of
id1 + id2, according to the expression grammar (18.1), are shown in Table 18.1.

Table 18.1: Handles during the parse of id1 + id2
Right sentential form Handle Reducing production
id1 + id2 id1 F → id
F + id2 F T → F
T + id2 T E → T
E + id2 id2 F → id
E + F F T → F
E + T E + T E → E + T

Finally, if S ⇒∗

rm
αAw ⇒rm αβw, as shown in Fig. 18.2, then the production A → β in

the position following α is a handle of sentential αβw. In other words, a handle of a right
sentential form γ is a production A → β such that a position of γ where the string β may
be found, such that replacing β at that position by A produces the previous right-sentential
form in a right-most derivation of γ.

Notice that the string w to the right of the handle must contain only terminal symbols.
For convenience, we refer to the body β as handle rather than A → β. Note that we say

Lecture 18: Aug. 26,28 2019 18-3

S

α

A

β w

Figure 18.2: A handle A → β in the parse-tree for αβw

”a handle” instead of ”the handle”, because grammar could be ambiguous, with more than
one right-most derivation of αβw. However, if a grammar is unambiguous, hen every right
sentential form of the grammar has exactly one handle.

The rightmost derivation in reverse can be obtained by ”handle pruning”. That is, we start
with a string of terminals w to be parsed. If w is sentence of the grammar at hand, then
let w = γn, where γn is the nth right-sentential form of some as yet unknown rightmost
derivation,

S = γ0 ⇒rm γ1 ⇒rm γ2 ⇒rm ... ⇒rm γn−1 ⇒rm γn = w

To reconstruct the derivation in reverse order, we locate the handle βn in γn and replace
βn by the head of the relevant production An → βn to obtain the previous right-sentential
form γn−1. We will discuss later as how the handles are to be found.

We then repeat the process, i.e., we locate the handle βn−1 in γn−1 and reduce the handle
to obtain the right-sentential form γn−2. Continuing in this way, we obtain the right sen-
tential form consisting only the start symbol, say, S, then we halt and announce successful
completion of parsing. The reverse of the sequence of productions used in reductions is a
right most derivation for the input string.

18.2 Shift-reduce parsing

The shift-reduce parsing is bottom-up parsing where stack holds the grammar symbols and
the input buffer holds the rest of the string to be parsed. We will see that handle always
appears at top of the stack just before it is identified as the handle. As discussed earlier, $
will indicate the bottom of the stack, as well right end-marker of the input. Conventionally,
when indicating the stack, the top of the stack is its right end. Initially, the stack is empty
and the string w is on the input, as shown below:

STACK INPUT

$ w $

During the left-to-right scan of input string, the parser shifts zero or more input symbols
onto the stack, until it is ready to reduce a string β of grammar symbols on the top of the
stack. It then reduces β to the appropriate head of the production symbol. The parser
repeats this cycle until it has detected an error or until the stack contents reduces to start
symbol of grammar, e.g., S, and simultaneously, the input becomes empty, indicated by $
symbol, ass shown below.

18-4 Lecture 18: Aug. 26,28 2019

STACK INPUT

$ S $

When the parser enters into this configuration, it halts and announces successful completion
of parsing. The Table 18.2 shows the steps through which the shift-reduce parser will go
through while it is parsing the input id1+id2. The parsing is carried out using the expression
grammar shown in Table 18.1 (page 18-1).

Table 18.2: Configurations of a shift-reduce parser on input id1 + id2
STACK INPUT ACTION
$ id1 + id2 $ shift
$ id1 + id2 $ reduce by F → id
$ F + id2 $ reduce by T → F
$ T + id2 $ reduce E → T
$ E + id2 $ shift
$ E + id2 $ shift
$ T + id2 $ reduce by F → id
$ E + F $ reduce by T → F
$ E + T $ reduce by E → E + T
$ E $ accept

We have noted that primary operations of this parser are shift and reduce, but there are
actually four possible operations:

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right-end of the string (i.e., body of some production) to be reduced
must be at the top of the stack. Locate the left end of the string within the stack and
decide as what non-terminal should replace it.

3. Accept. Declare the successful completion of the parsing.

4. Error. Discover a syntax error and call and error recovery routine.

For the shift-reduce parsing, the handle will always appear at the top of the stack, and
never inside it. Consider the following case: Non-terminal A is replaced by βBx, and then
rightmost terminal B in the body βBx is replaced by γ. This is shown in Fig. 18.3.

S

A

B

yxα β γ

Figure 18.3: Successive steps for rightmost derivation

Let us imagine that the shift-reduce parser has just reached the configuration given below:

Lecture 18: Aug. 26,28 2019 18-5

STACK INPUT

$ αβγ xy $

The parser reduces the handle γ to B to reach the configuration:

$ αβB xy $

The parser now shifts the string x onto the stack through a sequence of one or more shifts
moves to reach the configurations:

$ αβBx y $

with handle βBx on top of the stack, and it gets reduced to A, as the Fig. 18.3 shows.

The shift-reduce algorithm is shown as Algorithm 1.

Algorithm 1 Shift-reduce parsing algorithm(Input: sentence w, Stack-empty, output:
Parse-tree)

1: Push $ onto stack
2: word = nextword()
3: repeat
4: if (handle of A → β is on stack top) then
5: pop |β| symbols off the stack
6: push A onto stack
7: else
8: if (word 6= eof) then
9: push word

10: word = nextword()
11: else
12: report syntax error and halt
13: end if
14: end if
15: until word=eof & stack contains goal

For an input of length n, this shift-reduce parser performs n shifts. It performs a reduction
for each step in the derivation, for r steps. It looks for a handle for each iteration of the
repeat-until loop, so it must perform n + r handle-finding operations. This is equal to
number of nodes in the parse-tree; each shift and each reduce creates a new node in the
parse-tree.

18.3 Review Questions

1. In shift-reduce parsing, what do you mean by ”derivation in reverse order”? Explain.

2. What is ”handle pruning” in such reduce parsing? Explain.

18-6 Lecture 18: Aug. 26,28 2019

3. What do you understand by ”right-mots derivation” and ”in reverse” in a shift-reduce
parsing? What is the physical position of a handle, when it is about to be reduced?

4. At any moment, what is preferred operation out of ”shift” and ”reduce”? Justify your
answer.

5. What are shift-reduce and reduce-reduce conflicts?

18.4 Exercises

1. For the grammar S → 0 S 1 | 0 1, indicate the handle in each of the right-sentential
forms:

(a) 000111

(b) 00S11

2. For the grammar S → 0 S 1 | 0 1, give the bottom-up parses for the following input
strings 000111.

3. For the grammar S → SS+ | SS∗ | a, indicate the handle in each of the following
following right-sentential forms:

(a) SSS + a ∗+

(b) SS + a ∗ a+

(c) aaa ∗ a++

4. For the grammar S → 0 S 1 | 0 1, give the bottom-up parsing for the input string
000111.

5. For the grammar S → SS+ | SS∗ | a, give the bottom-up parsing for the input string
aaa ∗ a++.

6. Consider the following grammar where S is the start symbol:

S → i c t S e S | i c t S | a

Compute FOLLOW for each non-terminal of the above grammar.

7. Construct the canonical collection of LR(0) items for the grammar.

8. Use the grammar: S → aSb | bSa | c, to parse the following expressions using shift-
reduce parsing:

(a) acb

(b) bca

(c) a2cb2

(d) a2b2ca2b2

9. If there are more than one handle available at the same time in a sentential, does it
imply that corresponding grammar ambiguous? Justify your answer for Yes/No, and
given examples in support or in counter.

10. Use shift-reduce parser to parse the following expressions, using expression grammar:

Lecture 18: Aug. 26,28 2019 18-7

(a) id ∗ id+ id

(b) id ∗ id/id

(c) id ∗ id+ id ∗ id

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica
S. Lam, et al., Sep 10, 2006.

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990.

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

[4] Tools for Large-scale Parser Development, Proceedings of the COLING-2000 Workshop
on Efficiency In Large-Scale Parsing Systems, 2000, pp. 54-54, http://dl.acm.org/
citation.cfm?id=2387596.2387604.

[5] https://www.antlr.org/

