
COMPILER CONSTRUCTION (LR(1) parser) Fall 2019

Lecture 20: Sept. 4-6,23 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

20.1 LR(1)-Parsing

In the LR(0) parser, the ACTION was either shift or reduce. In LR(1) there is additional
function GOTO. The Fig. 20.1 shows the schematic of LR(1) parser. It consists of an input,
an output, a stack, a driver program, and a parsing table that has two parts (ACTION table
and GOTO table). The driver program is same for all LR parsers, and only the parsing
table changes from one parser to another parser. The parsing programs reads characters
from input buffer one at a time. Where a shift-reduce parser would shift a symbol, an LR(0)
and LR(1) parser shifts a state. Each state summarizes the information contained in the
stack below it.

Input
a1 ... ai

... an $

LR
Parsing

Program

ACTION GOTO

Output
Stack sm

sm−1

...

$

sentence

Table Table

LR(1) Parser table

Figure 20.1: Model of an LR(1) Parser

The stack holds the states s0, s1, .., sm, where sm is at top. In the SLR method, the stack
holds the states from the LR(0) automaton. The canonical LR (we will call LR(1) as LR
only) and LALR (look-ahead LR) methods are similar. By construction, each state has a
corresponding grammar symbol. Note that states corresponds to sets of items, and there
is a transition from state i to state j if GOTO(Ii, X) = Ij . All transitions to state j must
be for same grammar symbol X . Thus, each state, except the start state 0, has a unique
grammar symbol associated with it. However, some times, there are more than one state
for same symbol. For example, states I5 and state I9 are both associated with symbol F .

20-1

20-2 Lecture 20: Sept. 4-6,23 2019

Similarly, for symbol T there are two states I6 and I8. These are the cases where there are
two productions for one non-terminal symbol. There are also two states for symbol E (1
and 7).

Table 20.1: Expression Grammar
Rule No. Rule
1. E → E + T
2. E → T
3. T → T × F
4. T → F
5. F → (E)
6. F → id

I0

E′ → .E

E → .E + T

I1.

E′ → E.
E → E.+ T

E +

accept

id
F

(

I4

F → id.

T → F.

I5

I2
E → E + .T

id

F

$

T

E → .T
T → .T ∗ F
T → .F
F → .(E)

F → .id

3

T → .T ∗ F
T → .F
F → .(E)

F → .id

(

F

+

id

I6
E → E + T.

T → T. ∗ F

I10
T → T ∗ .F
F → .(E)

F → .id

∗

(

F

id

4

I3
F → (.E)

E → .E + T

E → .T

T → .T ∗ F

T → .F

0, 10

(

(

T

F

5

F → .(E)

F → .id

I7
E → E.+ T
F → (E.)

F → (E).

)

)
7

I8 I9

E → T.
T → T. ∗ F

T → T ∗ F.

T ∗

10

I11

T

3

8

3

2, 3

2, 3, 10

5

4

7

+

E

2

3

7

4

E

id

Figure 20.2: LR(0) automaton for expression grammar given in Table 20.1

Structure of LR(1)-Parsing table We will first consider SLR(1) where the S stands
for simple. SLR(1) parsers use the same LR(0) configuration sets and have the same table
structure and parser operation, so everything you have already learned about LR(0) applies
to LR(1) parser also. The difference comes in assigning table actions, where we are going
to use one token of lookahead to help arbitrate among the conflicts. If we think back to the
kind of conflicts we encountered in LR(0) parsing, a state in an LR(0) parser can have at
most one reduce action and cannot have both shift and reduce instructions.

Since a reduce is indicated for any completed item, this dictates that each completed item
must be in a state by itself. But let’s revisit the assumption that if the item is complete,
the parser must choose to reduce. Is that always appropriate? If we peeked at the next
upcoming token, it may tell us something that invalidates that reduction. If the sequence
on top of the stack could be reduced to the nonterminal A , what tokens do we expect to
find as the next input? What tokens would tell us that the reduction is not appropriate?

Lecture 20: Sept. 4-6,23 2019 20-3

Perhaps Follow(A) could be useful here!

The parsing table of LR(1) parser consists of two parts: a parsing-action function ACTION,
and a goto function GOTO.

1. The ACTION function takes arguments a state si and a terminal a (or $, the end
marker). The value of ACTION [si, a] can have one of four forms:

(a) Shift sj , where sj is a state. The action taken by the parser effectively shifts
input a to the stack, but uses state sj to represent a.

(b) Reduce A → β. The action of the parser effectively reduces β on the top of the
stack to head A. The states which corresponds to Reduce ACTION have no
further transitions, e.g., states 4, 5, 9, 11.

(c) Accept. The parser accepts the input and finishes parsing.

(d) Error. The parser discovers an error in the input, and takes some corrective
action.

2. We extend the GOTO function, defined on sets of items, to states: if GOTO[Ii, A] =
Ij , then GOTO also maps a state i and a nonterminal A to state j.

LR(1)-Parser configurations The parser configurations represents the the complete
state of the parser. A state is: its stack and the remaining input. A configuration of an LR
parser is a pair:

(s0s1...sm, aiai+1...an$)

where first component is the stack content (top on the right), and the second component is
the remaining input ai...an. This configuration represents the right sentential form:

X1X2...Xmaiai+1..an

in the same way as shift-reduce parser; the only difference is that instead of grammar
symbols, the stack holds states from which grammar symbols can be recovered. That is, Xi

is the grammar symbol represented by state si. Note that s0, the start state of the parser,
does not represent a grammar symbol, and servers as a bottom-of-stack marker, as well as
playing an important role in the parser.

Behaviour of LR(1) parser The next move of the parser from the configuration above
is determined by reading ai, the current input symbol, and sm, the state on top of the stack,
and the consulting entry after each of the four steps of move are as follows:

1. If ACTION [sm, ai] = shift s, the parser executes a shift move; it shifts the next state s
onto the stack, and enters s into the configuration,

(s0s1...sms, ai+1...an$)

The symbol ai need not to be held on the stack, since it can be recovered from s, if needed.
The current input symbol is now ai+1.

20-4 Lecture 20: Sept. 4-6,23 2019

2. If ACTION [sm, ai] = reduce A → β, then the parser executes a reduce move, entering
the configuration:

(s0s1...sm−rs, aiai+1...an$)

where r is the length of β, and s = GOTO[sm−r, A]. Here the parser first popped r
state symbols off the stack, exposing state sm−r. The parser then pushed s, the entry
for GOTO[sm−r, A], on to the stack. The current input symbol is not changed in a reduce
move. For the LR parsers we will constructXm−r+1...Xm, the sequence of grammar symbols
corresponding to the states popped off the stack, will always match β, the right side of a
reducing production. Note that, Xi stands for terminals/non-terminals.

Output of the LR parser is generated after a reduce move by executing the semantic action
associated with the reducing production.

3. If ACTION [sm, ai] = accept, parsing is complete.

4. If ACTION [sm, ai] = error, it calls for error routine.

The LR parser algorithm is given below as Algorithm- 1. All the LR parser behave in the
similar way, and the only difference between them is the variation in functionalities of the
ACTION and GOTO functions. Initially, the parser has s0 on its stack, where s0 is initial
state, and w $ in the input buffer.

Algorithm 1 LR(1)-parsing Algorithm (Input: String w and LR-parsing table with func-
tions ACTION and GOTO for a grammar G, Output: IF w ∈ L(G), output is reduction
steps of a bottom-up parse for w, otherwise outputs error)

1: Initial state: a is first input symbol of w $
2: push s0 on stack
3: while (True) do
4: Let s state is on top of stack
5: if (ACTION [s, a] = shift si) then
6: push state si onto stack
7: let a be the next input symbol;
8: else
9: if (ACTION [s, a] = reduce A → β) then

10: pop |β| symbols off the stack
11: let state s now be on the top of the stack
12: output the production A → β
13: else
14: if (ACTION [s, a]= accept) then
15: accept & break loop
16: else
17: call error-recovery routine
18: end if
19: end if
20: end if
21: end while

Lecture 20: Sept. 4-6,23 2019 20-5

Entries in the ACTION table are encoded using the letters s for shift and r for reduce. Thus,
the entry s 4 indicates the action ”shift and go to state s 4,” while r 2 indicates “reduce by
production 2.” The GOTO table encodes the transition that must be taken after a reduce
action. Its sparsity reflects the fact that relatively few states represent reductions.

Example 20.1 Construct the LR-parsing table for the augmented expression grammar ta-

ble:

(1) E → E + T

(2) E → T

(3) T → T ∗ F

(4) T → F

(5) F → (E)

(6) F → id

The codes for action are as follows:

1. si means shift and stack state i

2. rj means reduce by the production number numbered j

3. acc means accept

4. blank means error

Note that the value of GOTO[s, a] for terminal a is found in the ACTION field connected
with the shift action on input a for state s. The GOTO field gives GOTO[s, A] for nonter-
minal A.

20.2 Construction of SLR-Parsing Tables

The SLR method begins with LR(0) item and LR(0) automata. That is, given a grammarG,
we augment G to produce G′, with a new symbol ′. From G′ we construct C, the canonical
collection of sets of items for G′ together with GOTO function.

The ACTION and GOTO entries in the parsing table are then constructed using the Algo-
rithm 2. For this we must know FOLLOW(A) for each nonterminal A of a grammar.

The parsing table determined by above algorithm is called SLR(1) table for G. The parser
is called SLR(1) parser. However, 1 is omitted, and the parser is called SLR. This is
because, more than one lookahead is not common.

Example 20.2 Construct SLR table for augmented expression grammar.

We consider the set of items of LR(0) given in Fig. 20.2 as follows:

20-6 Lecture 20: Sept. 4-6,23 2019

Algorithm 2 Constructing-SLR-parsing-table(Input: Augmented grammar G′, Output:
SLR-parsing table functions ACTION and GOTO for G′)

1: Construct C = {I0, I1, ..., In}, the collection sets of LR(0) item sets for G′

2: State i is constructed from Ii. The parsing actions for i are determined as follows:
3: if [A → α.aβ] ∈ Ii and GOTO(Ii, a) ∈ Ij then
4: set ACTION [i, a] to ”shift j.” ; a is terminal
5: end if
6: if [A → α.] ∈ Ii then
7: set ACTION [i, a] to ”reduce A → α” (for all a ∈ FOLLOW (A), and A 6= S′

8: end if
9: if [S′ → S.] ∈ Ii then

10: set ACTION [i, $] to ”accept.”
11: end if
12: ;GOTO for state i are constructed for all nonterminals A using the rule:
13: if GOTO(Ii, A) = Ij then
14: GOTO[i, A] = j
15: end if
16: Mark all empty entries as error
17: Initial state of the parser is constructed from set of items containing [S → S′].

E′ → .E
E → .E + T
E → .T
T → .T × F
T → .F
F → .(E)
F → .id

Table 20.2: Parsing table for expression Grammar

STATE
ACTION table GOTO-table

id + * () $ E T F
0 s4 s3 1 8 5
1 s2 acc
2 s4 s3 6 5
3 s4 s3 7 8 5
4 r6 r6 r6 r6
5 r4 r4 r4 r4
6 r1 s10 r1 r1
7 s2 s11
8 r2 s10 r2 r2
9 r3 r3 r3 r3
10 s4 s3 9
11 r5 r5 r5 r5

The LR(1) parser table comprising ACTION table and GOTO table for expression grammar
and item sets of Fig. fig-automgrm, is shown as Table 20.2. The entries in this table are self
explanatory, for example, when state is 0, and input is id, we note from Fig. 20.2 that we
shift state of “F → id.”, i.e., state 4 (or I4) to stack. Wen input is ’+’, at state 1, there is

Lecture 20: Sept. 4-6,23 2019 20-7

a transition to state 2.

When stack on top of stack is 4, and input is ’+’, there is no transition, but there us
reduction due to ”F → id.” rule.

The item F → .(E) gives rise to the entry ACTION [0, (] = shift 3, and item F → .id to
entry ACTION [0, id] = shift 4. Other items in I0 result to no actions.

Now consider I1: E
′ → E., and E → E. ∗T : Since FOLLOW (E) = {$,+,)}, the first item

yields ACTION [1, $] = accept, and the second yields ACTION [1,+] = shift 2.

�

20.3 Review Questions

1. In LR(0) parser, when top of stack is β, such that there is a production A → β, is it
always advisable to reduce it always, and not to consider any scope to shift the next
input terminal to shift it to stack? Justify your answer.

2. What ia main difference between LR(0) and LR(1) parser?

3. What is common part between LR(0) and LR(1) parser?

4. Where is no reduce state after I6 due to “E → E + T.” in Fig. 20.2?

5. What are all the four forms of ACTION functions in a LR(1) parser?

20.4 Exercises

1. For the grammar S → 0 S 1 | 0 1, indicate the handle in each of the right-sentential
forms:

(a) 000111

(b) 00S11

2. For the grammar S → 0 S 1 | 0 1, give the bottom-up parses for the following input
strings 000111.

3. For the grammar S → SS+ | SS∗ | a, indicate the handle in each of the following
following right-sentential forms:

(a) SSS + a ∗+

(b) SS + a ∗ a+

(c) aaa ∗ a++

4. For the grammar S → 0 S 1 | 0 1, give the bottom-up parsing for the input string
000111.

5. For the grammar S → SS+ | SS∗ | a, give the bottom-up parsing for the input string
aaa ∗ a++.

6. Use the grammar: S → aSb | bSa | c, to parse the following expressions using shift-
reduce parsing:

20-8 Lecture 20: Sept. 4-6,23 2019

(a) acb

(b) bca

(c) a2cb2

(d) a2b2ca2b2

7. If there are more than one handle available at the same time in a sentential, does it
imply that corresponding grammar ambiguous? Justify your answer for Yes/No, and
given examples in support or in counter.

8. Use shift-reduce parser to parse the following expressions, using expression grammar:

(a) id ∗ id+ id

(b) id ∗ id/id

(c) id ∗ id+ id ∗ id

9. In the Fig. 20.2, how many states are reduce states? They corresponds to what
property of the grammar?

10. Why there is no accept state after state I6 due to “E → E + T.” in the Fig. 20.2?

11. Explain the configurations of the LR(1) parser.

12. Write down the LR(1) algorithm in the form of description in your own language.

13. For the expression grammar and the expression id+ id, show all the steps, progressive
stack contents, ACTION and GOTO computations for the LR(1) parser.

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica
S. Lam, et al., Sep 10, 2006.

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990.

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

[4] Tools for Large-scale Parser Development, Proceedings of the COLING-2000 Workshop
on Efficiency In Large-Scale Parsing Systems, 2000, pp. 54-54, http://dl.acm.org/
citation.cfm?id=2387596.2387604.

