
-4

COMPILER CONSTRUCTION (Phases of Compiler) Fall 2019

Lecture 3-4: July 22,24, 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

3.1 Phases of compiler

If we look into the analysis and synthesis parts of the compiler, there are further sub-parts
of these blocks, each of these transforms one representation into another. These sequence of
operations are called phases of the compiler. The symbol table is used by all the phases of
the compiler. Usually, the analysis part is machine independent, hence it can be common
for many hardware (CPUs) of any given programming language. In such a scenario, the
back end can be better optimized to suit the machine architecture. Fig. 3.1 shows all the
phases of a compiler.

What varies from compiler to compiler is optimization phase, which may be complex, sim-
ple, or may be missing. Some of the compilers generate directly the machine code of target
machine, others generate assembly language program. When, it is assembly language pro-
gram generated, there may optionally be an optimizer after that, which is machine specific
optimizer.

3.1.1 Lexical Analysis

The lexical analysis is first part of analysis part, and it produces the tokens (lexemes) from
the input program, by meaningful grouping of characters input (scanner). There is a slight
difference between lexeme and token. Each token has format: 〈token-name, attribute-values.
These lexemes are passed to the next phase, i.e., syntax analyser. The token-name is ab-
stract symbol, that is used during the syntax analysis, and the field attribute value is a
pointer to an entry in the symbol table. The contents at this entry is useful for semantic
analysis and code generation. Consider a C language statement,

dist = initdist+ hours ∗ 80;

The following analysis is carried out using this statement:

1. dist is a lexeme which is mapped to a token 〈id, 1〉, where id is an abstract symbol for
identifier, and 1 point to the entry number 1 in the symbol table. This entry holds
the name of identifier and its type.

3-1

3-2 Lecture 3-4: July 22,24, 2019

Lexical Analyser

Syntax Analyser

Semantic Analyser

Intermediate
code generator

Code optimizer

Code Generator

Assembler

Symbol Table

A

B

C

D

E

F

G

H

A: Character stream of HLL Program

B: Token stream

C: Syntax tree

D: Syntax tree

E: Intermediate representation

F : Intermediate representation

G: Assembly language code

of target machine

H : Object code

Figure 3.1: Phases of a compiler

2. The “=” is a lexeme that is mapped to the token 〈=〉, and there is nothing else, as
the assignment has no attribute value.

3. The “initdist” lexeme is mapped into the token 〈id, 2〉, where 2 indicates a pointer to
2nd entry in the symbol table, for “initdist”.

4. The + lexeme is mapped into token 〈+〉.

5. hourse lexeme is mapped into token 〈id, 3〉, and 3 points to entry no. 3 in the symbol
table.

6. The ∗ lexeme is mapped into token 〈∗〉.

7. 80 is a lexeme that is mapped into token 〈80〉.

Note that blanks in the above statement have not been considered, as they (including tab
character) are discarded by the lexical analyzer in the context of C language.

In C, space/tab/newline separates the lexemes, which may not be the case in other lan-
guages. For example, in Fortran, the statement “DO10I” is cleection of three lexemes:
“DO”, “10”, and “I”.

Once the tokens are generated, the statement in the form of token stream (B in Fig. 3.1) is:

〈id, 1〉 〈=〉 〈id, 2〉 〈+〉 〈id, 3〉 〈∗〉 〈80〉 (3.1)

Lecture 3-4: July 22,24, 2019 3-3

In the above representation, =,+, ∗ are abstract symbols for assignment, addition, and
multiplication, respectively.

In Fig. 3.1, we shown various phases of a compiler, where output of each phase is identified
by a specific representation (A−H), where A corresponds to dist = initdist+ hours ∗ 80;,
in our example. The output of lexical analyser is set of tokens, represented by equation 3.1.
Corresponding to the the value of B (output of lexical analyser), the outputs, C, ..., H are
shown in Fig. 3.2.

C :
=

〈id, 1〉 +

〈id, 2〉

〈id, 3〉

∗

80

D :

=

〈id, 1〉 +

〈id, 2〉 ∗

〈id, 3〉
inttofloat

80
E : t1 = inttofloat(80)

t2 = id3 ∗ t1

t3 = id2+ t2

id1 = t3

F : t1 = id3 ∗ 80.0

id1 = id2+ t1

G : LD R1, id3

MULT R1, R1,#80.0

LD R2, id2

ADD R1, R1, R2
ST id1, R1

H : 10110....01

01101....101
10101...101
11011...0101
1110101...10010

dist

initdist

hours

....

....

.....

Symbol Table

Figure 3.2: Outputs of various phases

3.1.2 Syntax Analysis

The second phase of compiler is syntax analysis (or parsing), which provides a tree like
structure to the sequence of tokens produced by the lexical analyser. The syntax tree
depicts the grammatical structure of the language sentence, where each interior node is an
operation (assignment, arithmetic, or logical) and each child node represents the argument
or value of the operation. A syntax tree of the tokens in equation 3.1 is shown in Fig. 3.2(C).
The syntax tree shows the order in which operations are performed. Note that, the lower

3-4 Lecture 3-4: July 22,24, 2019

subtree is always computed before computing the upper subtree.

The subsequent phases of the compiler use the grammatical structure of syntax tree to
produce the object/target code.

3.1.3 Semantic analysis

The semantic analyser makes use of syntax tree and the information stored in the symbol
table to check semantic consistency in the source program with respect to the language
definition. This phase also collect the type information of the data and stores in symbol
table or in the syntax tree, to use during the intermediate code generation.

An important function of semantic analysis is type checking, where each of the operator is
checked for its matching operands. For example, in C language an array index is checked to
be an integer. The semantic analyser will check that it is integer. The language specifica-
tion permits some type conversion, called coercion, e.g., in Fig. 3.2(D), inttofloat operator
converts value 80 to float by adding extra node in the parse-tree.

3.1.4 Intermediate code generation

Before the code is translated into the final object code, a compiler may construct one or
more intermediate representations. One of the commonly used format is syntax tree for this
representation. The intermediate code requires many properties:

1. it should be easy to produce

2. it should be easy to translate into machine code

3. the machine code translation should be efficient in time as well as space

The intermediate code may be two-address code or three-address code. We will consider
three-address code for our discussions. Each operand in the three address code behaves like
a register. We reproduce the intermediate code of Fig. 3.2(E), as below.

t1 = inttofloat(80)

t2 = id3 ∗ t1

t3 = id2+ t2

id1 = t3

The simplest way to generate the intermediate code is to generate one intermediate code
instruction for each of the operator in the syntax tree. The three address instructions have
at most one instruction to the right hand side, they fix the order of execution, and the
multiplication operator precedes the three instructions.

3.1.5 Code optimization

The optimization may be done either before generating the assembly code or at both places
(i.e., after and before). When it is before assembly code generation, it is called machine

Lecture 3-4: July 22,24, 2019 3-5

Table 3.1: Code optimization results of typical program

Original code Optimized code

x = ... x = ...

y = ... y = ...

w = 1 w = 1
for i = 1 to n t = 2 ∗ w ∗ x ∗ y
read z for i = 1 to n

w = 2 ∗ w ∗ x ∗ y ∗ z read z

end w = w ∗ t ∗ z
end

independent code optimization, at the level of intermediate code. The objective of code
optimization is to produce better object code, i.e., the one with better execution efficiency,
smaller size of code, so that it consumes lesser memory as well as power. For example, the
Fig. 3.2(F) shows the following optimized intermediate code for the four line original code.

t1 = id3 ∗ 80.0

id1 = id2+ t1 (3.2)

Note that, optimized code is generated using intermediate code and not through the syntax-
tree.

There is lot of variations of optimization from compiler to compiler. The compilers that do
this task more are called optimizing compilers, and significant amount is spent in this phase.

3.1.6 Assembler

The assembly code generated for the current example is shown in Fig. 3.2 (G). This code,
is corresponding to equation 3.2, which shows that register R1 has been allocated. The
assembly code is self explanatory.

LD R1, id3

MULT R1, R1,#80.0

LD R2, id2

ADD R1, R1, R2

ST id1, R1

3.1.7 Code generations

The code generator phase takes as its input the intermediate code and produce the ob-
ject/target code of the machine (see Fig. 3.2 (H)), which is assembly language code. If the
assembler is not used, the code generator phase directly produces the machine language
code. An important aspect of code generation is judicious assignment of CPU registers to
hold the variables.

3-6 Lecture 3-4: July 22,24, 2019

3.1.8 Grouping of Phases into Passes

We have discussed the phases of a compiler, each one as a logical organization of compiler.
In the real implementation of the compiler, several phases may be organized as a pass. A
pass will read an input file and write an output file. However, in a phase, it may read the
input from a file or memory and write the same into a file/memory. For example, the front
end phases like lexical analysis, syntax analysis, semantic analysis and intermediate code
generation can be grouped into a single a single pass. The back-end may correspond to one
pass for code generation for a particular machine. It is possible to make different compilers
by combining the front end with back end of different machines.

References

[1] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho , Monica
S. Lam, et al., Sep 10, 2006

[2] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990

[3] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

