
COMPILER CONSTRUCTION (Predictive parser) Fall 2019

Lecture 16: Aug. 19,21 2019

Instructor: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

16.1 FIRST and FOLLOW Functions

Construction of top-down and bottom-up parsers are aided by two functions: FIRST and
FOLLOW , associated with grammar. During the top-down, they allow to choose which
production to apply based on the next input symbol. During the panic mode error recovery,
sets of tokens produced by FOLLOW can be used as synchronizations tokens.

First we define FIRST (α). Let α is any string of grammar symbols, to be the set of
terminals that begin strings derived from α. If α ⇒∗ ε, then ε is in FIRST (α). For
example, if A ⇒∗ cγ, then c is in FIRST (A) (see Fig. 16.1).

Regarding using FIRST in predictive-parsing, consider A-productions, A → α | β, where
FIRST (α) and FIRST (β) are disjoint sets. We can then choose between A-productions
by looking at the next input symbol, say a. Since a can be in at most one of FIRST (α) or
FIRST (β), not both. For instance, if a is in FIRST (β), choose A → β.

FOLLOW (A) for non-terminal A is set of terminals a that can appear immediately to the
right of A, in some sentential form, e.g., S ⇒∗ αAaβ for some α, β, as in Fig. 16.1. Note that
there might be symbols between A and a, at some time during the derivation, but if they
exists, they derived ε and disappeared. If A can be right most symbol in some sentential
form, then $ is in FOLLOW (A). The $ is special end-marker symbol, that is assumed to
be a symbol of any grammar.

S

α A a β

γc

Figure 16.1: c is in FIRST (A), a is in FOLLOW (A)

To compute FIRST (A) for all grammar symbols X , we apply the following rules until no
more terminals or ε can be added to any FIRST set.

1. If X is terminal then FIRST (X) = {X}.

16-1

16-2 Lecture 16: Aug. 19,21 2019

2. If X is non-terminal, and X → Y1Y2...Yk is a production for k ≥ 1, then place a in
FIRST (X) if for some i, a is in FIRST (Yi), and ε is in all of FIRST (Y1), ..., F IRST (Yi−1);
i.e., Y1...Yi−1 ⇒∗ ε. If ε is in FIRST (Yj) for all j = 1, 2, ..., k, then add ε to
FIRST (X). For example, every thing in FIRST (Y1) is surely in FIRST (X). If
Y1 does not derive ε, then we add nothing more to FIRST (X), but if Y1 ⇒∗ ε, then
we add FIRST (Y2), and so on.

3. If X → ε is a production, then add ε to FIRST (X).

Now, we compute FIRST for any string X1X2...Xn as follows. Add to FIRST (X1X2...Xn)
all non-ε symbols of FIRST (X1). Also, add the non-ε symbols of FIRST (X2), if ε is
in FIRST (X1), and so on. Finally, add ε to FIRST (X1X2...Xn) if, for all i, ε is in
FIRST (Xi).

To compute FOLLOW (A) for all non-terminals A, apply the following rules until nothing
can be added to any FOLLOW set.

1. Place $ in FOLLOW (S), where S is start symbol, and $ is the input right end-marker.

2. If there is a production A → αBβ, then everything in FIRST (β), except ε, is in
FOLLOW (B).

3. If there is a production A → αB, or production A → αBβ, where FIRST (β) contains
ε, then every thing in FOLLOW (A) is in FOLLOW (B).

Example 16.1 Find the FIRST and FOLLOW for given non-recursive grammar.

E → T E′

E′ → +T E′ | ε

T → F T ′

T ′ → ×F T ′ | ε

F → (E) | id (16.1)

1. FIRST (F) = FIRST (T) = {(, id}, because, the two productions for F have bodies
that start with ”(” and ”id”. The T has only one production, and its body starts with
F . Since, F does not derive ε, FIRST(T) must be same as FIRST(F). The same argument
covers FIRST(E) = {(, id}.

2. FOLLOW (E) = FOLLOW (E′) = {), $}. Since E is start symbol, FOLLOW (E) must
contain $. The production body (E) explains why the right parenthesis is in FOLLOW (E).
For E′, this non-terminal appears only at the ends of the bodies of E-productions. Thus
FOLLOW (E′) must be same as FOLLOW (E). �

16.2 LL(1) Grammars

Predictive parsers, i.e., recursive-descent parsers requires no backtracking. They can be
constructed for a class of grammars called LL(1). The first ”L” in the LL(1) grammar

Lecture 16: Aug. 19,21 2019 16-3

stand for scanning the input from left to right, and the second ”L” for producing a leftmost
derivation, and ”1” stands for using one input symbol for look ahead at each step to make
parsing action decisions.

The LL(1) grammars are rich enough to cover most programming constructs, although it
requires writing suitable grammar for the source language. A non-left-recursive or ambigu-
ous grammar can be LL(1). A grammar G is LL(1) if and only if whenever A → α | β are
two different productions of G, the following conditions hold:

1. For no terminal a do both α and β derive strings beginning with a.

2. At the most one of α and β can derive the empty string.

3. If β ⇒∗ ε, then α does not derive any string beginning with a terminal in FOLLOW (A).
Similarly, if α ⇒∗ ε, then β does not derive any string beginning with a terminal in
FOLLOW (A).

The first two conditions are equivalent to the statement that FIRST (α) and FIRST (β)
are disjoint sets. The third condition is equivalent to stating that if ε is in FIRST (β), then
FIRST (α) and FOLLOW (A) are disjoint sets, and likewise if ε is in FIRST (α).

The predictive parsers can be constructed for LL(1) grammars since the production to
apply for a non-terminal can be selected by looking only at the current input symbol.
Flow-of-control constructs, with their distinguishing keywords, generally satisfy the LL(1)
constraints. For example, we have productions:

stmt → if (expr) stmt else stmt

| while (expr) stmt

| { stmt-list }

then keywords if, while and the symbol ‘{’, tell us which alternative is the only one that
could be successor if we have to find the correct statement. The reader may verify in every
high-level language any two keywords are never starting with same first character. This is
because the language designers choose keywords such that every keyword starts with unique
first character.

16.3 Predictive parsing

A predictive parser is a recursive descent parser that has no backtracking. The predictive
parser can also be automatically generated using tools like, ANTLR [?]. ANTLR is a
successor to the Purdue Compiler Constructor Tool Set (PCCTS), first developed in 1989.
It is written in Java.

The predictive parsing algorithm collects the information from FIRST and FOLLOW sets
into a predictive parsing table M [A, a] – a two-dimensional array, where A is a non-terminal,
and a is a terminal or the the end-marker symbol $. The algorithm for construction of this
table is based on following idea:

16-4 Lecture 16: Aug. 19,21 2019

1. The production A → α is chosen as entry in M [A, a] if a is the next input symbol in
FIRST (α).

2. The only complication occurs when α = ε or, more generally α ⇒∗ ε. In this case, we
should again choose A → α, if the current input symbol is in FOLLOW (A), or if the
input pointer has reached to $, hence $ is in FOLLOW (A).

The Algorithm 1 is the algorithm for construction of predictive parsing table.

Algorithm 1 Construction of predictive parsing table(Input: GrammarG, Output: Parsing
table M)

1: For each terminal a in FIRST (A)(where A is current input), add A → α to M [A, a]
2: If ε ∈ FIRST (α), then for each terminal b in FOLLOW (A), add A → α to M [A, b].
3: If ε ∈ FIRST (α) and $ ∈ FOLLOW (A), add A → α to M [A, $].

If, after performing the above, there is no production at all in position M [A, a], then set
M [A, a] to error. The error is usually represented by empty entry in the table. The other
alternatives we will discuss later.

Example 16.2 Construct parsing table for the expression grammar represented by Equa-
tion (16.1), using Algorithm-1 (page no. 1).

In the parsing-table 16.1, the blanks are error entries, and non-blanks indicate a production
with which to expand a non-terminal.

Table 16.1: predictive Parsing table M [A, a], where A is terminal and a is non-terminal.
Non-terminal + × (id) $

E E → TE′ E → TE′

E′ E′ → +TE′ E′ → ε E′ → ε

T T → FT ′ T → FT ′

T ′ T ′ → ε T ′ → ×FT ′ T ′ → ε T ′ → ε

F F → (E) F → id

The explanation of entries in table above are as follows:

For the production E → TE′, since FIRST (TE′) = FIRST (T) = {(, id}, this production
is added to M [E, (] and M [E, id]. The production E′ → +TE′ is added M [E′,+], since
FIRST (+TE′) = {+}. Since FOLLOW (E′) = {), $}, the production E′ → ε is added to
M [E′,)] and M [E′, $].

For production T ′ → ×FT ′, the × ∈ FIRST (T ′), when we put T ′ → ×FT ′ in M [T ′,×],
we note that there is also other production T ′ → ε. For this, we require FOLLOW as
follows: FOLLOW (T ′) = FOLLOW (FT ′) = FOLLOW (T) = FIRST (E′) = ’+’, as per
grammar 16.1. Also, FOLLOW (E′) = FOLLOW (TE′), hence $ ∈ FOLLOW (TE′). �

16.4 Review Questions

1. Can the values in FIRST and FOLLOW be non-terminals?

Lecture 16: Aug. 19,21 2019 16-5

2. Find out the FIRST (A) in the following cases:

(a) A → aA

(b) At aAB

(c) A → BbA

(d) A → ε

16.5 Exercises

1. Construct predictive parsing table for following grammars:

(a) S → aSa | bSb | ε

(b) S → aSb | ε

2. Given the productions for a grammar S → AS | a, A → aA | b, construct the predictive
parser table. Indicate the errors explicitly, if any, and the reasons for their occurrence.

References

[1] Earley, Jay (1970), ”An efficient context-free parsing algorithm” (PDF), Communica-
tions of the ACM, 13 (2): 94-102, doi:10.1145/362007.362035

[2] Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica
S. Lam, et al., Sep 10, 2006.

[3] Compiler design in C (Prentice-Hall software series) by Allen I Holub, Jan 1, 1990.

[4] Engineering a Compiler, by Keith D. Cooper and Linda Torczon, Morgan Kaufmann
Publishers, 2004.

[5] Tools for Large-scale Parser Development, Proceedings of the COLING-2000 Workshop
on Efficiency In Large-Scale Parsing Systems, 2000, pp. 54-54, http://dl.acm.org/
citation.cfm?id=2387596.2387604.

