
Distributed Algorithms M.Tech., CSE, 2016

Lecture 3: Asynchronous Shared memory.

Faculty: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

3.1 Introduction

Distributed computing theory develops computability and complexity theories for models whose computation
involves many processors interacting in certain limited unpredictable manner through some communication
objects, where a processor is shorthand for a sequential piece of code that includes instructions, some of
which involve access to the communication objects.

Distributed computing has focused on a number of models distinguished by the different communication
objects and different timing constraints. Among those investigated most extensively are the asynchronous
message-passing model, the asynchronous shared-memory model, asynchronous models.

3.2 Models

An asynchronous distributed computation model is the set of all sequential interleaving of communication
actions performed by sequential processes or processors on shared communication objects. A communication
action may be thought of as the invocation of a remote procedure call by a processor at an object. An object
may be thought of as a processor that executes the remote procedure call, changes its state, and responds
to the invoking processor by returning a value. The returned value causes the invoking processor to change
its state, which in turn determines the next parameter for the next access to a communication object. We
assume that processors never halt, and therefore after each return of an invocation, they enter a state in
which a new invocation is enabled.

In the network model, processors access unidirectional point-to-point communication channels. A single
communication object is associated with two processors, called sender and receiver, respectively. The sender
can invoke an action send(m) on the object. The effect of the action is to place a message m in the buffer
of the object. After placing the message in its buffer the object responds by returning an ok to the sender.
The receiver invokes an action receive which moves a message from the buffer of the object to the receiver,
if such a message exists, or the object responds by notifying exception otherwise. In the shared-memory
model, communication objects are read/write registers on which the action of read and write can be invoked.

Here we assume that communication objects do not fail. Yet, in light of the view of a communication object
as a “restricted” processor, it is not surprising that when communication failures are taken into account,
they give rise to results reminiscent of processor failures.

Given a protocol - the instantiation of processors with codes-and the initial conditions of processors and
objects, we define a space R of runs to be a subset of the infinite sequences of processors names. Since we
assume that a processor has a single enabled invocation at a time, such a sequence when interpreted as the
order in which enabled invocations were executed completely determines the evolution of the computation.

3-1



3-2 Lecture 3: Asynchronous Shared memory.

Before the system starts all runs in which the processor has its current input are possible. As the system
evolves, the local state of the processor excludes some runs. Thus with a local state of a processor we
associate a view - the set of all runs in R that are not excluded by the local state. By making processors
maintain their history in local memory we may assume that consecutive views of a processor are monotonically
nondecreasing. Thus, with each run r ∈ R of a protocol p we can associate a limit view lim(Vi(r, p)) of
processor Pi. A protocol f is full-information if for all i, r, and p we have lim(Vi(r, f)) ⊆ lim(V i(r, p)).
Intuitively, a full-information protocol does not economize on the size of its local state, or the size of the
parameter to its object invocation. Models which are oblivious, that is, the sequence of communication
objects a processor will access is the same for all protocols, possess a full-information protocol.

One can define the notion of full-information protocol with respect to a specific protocol in a nonoblivious
model, but we will not need this notion here. A sequence of runs r1, r2, . . . converges to a run r, if rk and
r share a longer and longer prefix as k increases.

It can be observed from the definition of a view, that two views of the same processor, are either disjoint, or
related by containment. Given an intermediate view Vi(r) of a processor Pi in run r, we say that a processor
outputs its view in r if for all Pj which have infinitely many distinct views in r, lim(Vj(r)) ⊆ Vi(r). Processor
Pi is faulty in r if it outputs finitely many views. Processor Pi is participating in r if it outputs any nontrivial
view. Otherwise it is sleeping in r. A model A with n processors with communication object OA wait-free
emulates a model B with n processors and communication objects OB if there is a map m from runs RA in
A to runs RB in B such that,

1. The sets of sleeping processors and faulty processors in r and m(r) are identical.

2. The map m is continuous with respect to prefixes. That is, if r1 , r2, . . . in A converges to r, then
m(r1),m(r2), . . . in B converges to m(r). This captures the idea that the map does not predict the
future.

3. The map m does not utilize detailed information about the past of a run, if this detailed informa-
tion is not available through processors views. Formally, for all Pj nonfaulty and for all r in A,
m(lim(Vj(r))) ⊆ lim(Vj(m(r))).

3.3 Asynchronous Model (Two-Processor Shared-Memory)

Consider a two-processor single-writer/multireader (SWMR) shared-memory system. In such a system, there
are two processors P1 and P0, and two shared-memory cells C1 and C0. Processor Pi writes exclusively to
Ci, but it can read the other cell. Both shared-memory cells are initialized to null ⊥. Computation proceeds
with each processor alternately writing to its cell and reading the cell of the other processor.

Can this two-processor system 1-resiliently (wait-free in this case, since for n = 2, n - 1 = 1) elect one of
the processors as the leader? No one-step full-information protocol, and consequently no one-step protocol
at all, for solving this problem exists. Consider the state of processor P1 after writing and reading. It could
have read what processor P0 wrote (denoted by P1 : w0), or it could have missed what processor P0 wrote
(denoted by P1 : ⊥). Thus, we have four possible views, two for each processor, after one step.

In the graph whose nodes are these views, two views are connected by an undirected edge if there is an
execution that gives rise to the two views. The resulting graph appears in figure 3.1. Since a processor
has a single view in an execution, edges connect nodes labeled by distinct processor IDs. The two nodes of
distinct IDs which do not share an edge are P1 : ⊥ and P0 : ⊥. This follows from the fact that in shared
memory in which processors first write and then read, the processor that writes second must read the value
of the processor that writes first.



Lecture 3: Asynchronous Shared memory. 3-3

P1 : ⊥ P0 : w1 P1 : w0
P0 : ⊥

Figure 3.1: One-step view graph.

The edge {P1 : ⊥, P0 : w1} corresponds to the execution: P1 writes, P1 reads, P0 writes, P0 reads. If we
could map the view of a processor after one step into an output, then processor P1 in this edge is bound to
elect P1, since the possibility of a solo execution by the processor has not yet been eliminated. Similarly, in
the edge {P0 : ⊥, P1 : w0}, processor P0 is bound to elect P0. Thus, no matter what processor is elected by
P1 and P0 in the views P1 : w0 and P0 : w1, respectively, we are bound to create an edge where at one end
P1 is elected and at the other end P0 is elected. Because there is an execution in which both processors are
elected, we must conclude that there is no one-step 1-resilient protocol for election with two processors.

References

[1] Allen B. Tucker, Jr., “The computer Science and Engineering Handbook,” CRC Press,
1997.


