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Lecture 10: Finite automata and Morphological Analysis
Lecturer: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Finite state automata and NLP

A formal language is a set of strings (i.e., sentences) made up by concatenating symbols (characters or words)
drawn from a finite alphabet. If a language has only a finite number of sentences, then a complete description
of the set of sentences can be given simply by presenting a finite list of all the sentences. But, if the language
infinite (contains infinite number of sentences), like all the natural languages, then some sort of recursive
or iterative description is to be provided to describe the sentences. This description is called grammar –
a set of pattern-matching rules that can be applied either to produce the sentences in the language one
after another or else to recognize whether a given string belongs to the set. The description may also be
provided by specifying an automaton, a mechanistic device that also operates either to produce or recognize
the sentences of the language.

A regular language can be described by grammars in various notations that are known to be equivalent in their
expressive power of the language, and they each can be used to describe all and only the regular languages.
The most common way of specifying a regular language is by means of a regular expression – a formula
that indicates the order in which symbols can be concatenated, specifies the alternative possibilities at each
position, and whether substrings can be arbitrarily repeated. The regular expression (c∗b(a|b|c)∗|ε)c denotes
the regular language described above. In this notation, concatenation is represented by order sequence in
the formula, alternatives are separated by vertical bars, asterisks (often called the Kleene closure operator
∗) indicate that strings satisfying subexpression just before ∗, can be arbitrarily repeated, and ε denotes the
empty string or null-string (string containing no elements).

The regular languages are also exactly those languages that are accepted by finite-state automata (FSA),
which are presented in the next section. The FSA, shown in Fig. fig:fsmdig accepts the language (c∗b(a|b|c)∗|ε)c.

Figure 10.1: Finite state machine to accept strings c∗b(a|b|c)∗|Σ)c

Because of their mathematical and computational simplicity, regular languages and finite-state automata
have been applied in many information processing tasks. Regular expressions are often used to specify
global search patterns in word-processors and in operating-system utilities such as Unix’ grep. The lexical
analysis component of most modern programming language compilers is defined as a finite-state atomata
that recognizes identifier classes, punctuation, numbers, braces, keywords, etc. But, complete and accurate
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natural language syntax and semantics lie beyond the power of finite-state automata. However, the recent
work has identified a number of important problems for which very efficient and effective finite-state solutions
can be found.

Another set of problems require that strings be systematically transformed into other strings. For example,
the negative prefix in in the abstract phonological representation such as in+practical must be realized with
an assimilated nasal as in impractical, or the inflected form stopping must be mapped either to its stem
stop (for use in information retrieval indexing) or to its morphological analysis stop+PresentParticiple as
an initial step in further processing.

10.2 Finite Automata

The finite automata are the machines which recognize regular languages, i.e, languages represented by regular
expressions (RE). Hence, there is relation of implication like this, FA → REGLANG → RExp → FA, in
other words, it is a bijection between all three entities. Let us consider that, talk or sound of a sheep
(sheep-talk language S) that can be represented by strings S = {baa!, baaa!, baaa!, ...}, where each sentence
in language is dependent on the length of /a/ sound. The set of strings of S can be represented by a
regular expression: baa+!. However, we will prefer it to be represented by a string /baa+!/ – a format of its
pronunciation. The sounds in set S can be recognized by a FA shown in the Fig. 10.2.

Figure 10.2: Finite Automata to recognize Sheep-talk

Formally, a FA is represented by M = (Q,Σ, q0, δ, F ), where

Q is finite set of states; here Q = {q0, q1, q2, q3, q4}

Σ is finite set of alphabets; here Σ = {a, b, !}

δ is transition function; i.e., δ : Q× Σ→ Q,

F is set of finite states, called accepting or final states, and here, F = {q4},

S = L(M) = {baa!, baaa!, baaaa!, . . . }.

The recognition process for the language string through FA, is represented by the algorithm 1. For this,
the FA’s tape is divided into squares, called index positions, where each position is holding one symbol from
alphabet Σ. We consider that w is input string, and |w| = n is length of input.
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Table 10.1: Transition table for FA in Fig. 10.2
State State for State for State for

Input a Input b Input !
q0 - q1 -
q1 q2 - -
q2 q3 - -
q3 q3 - q4
q4 - - -

The tape is considered as array indexed by index variable. For accepting by a FA it is necessary that read
head has completely read the input, and the current state of the FA is the final state. Until this dual
condition is not satisfied, the read head is advanced to next position by increasing the index and the state
also changes as per the FA. When input is exhausted but accepting state (q4) is not reached, the input is
rejected. Note that the transition table 10.1 completely describes the FA shown in Fig. 10.2.

Algorithm 1 : function dfa-recognize(tape, machine) return accept / reject;

1: index← initial-position-on-tape
2: while True do
3: if end of input then
4: if state== accept then
5: return accept
6: else
7: return reject
8: end if
9: else

10: if transition-table[state, tape[index]] == empty then
11: return reject
12: else
13: state ← transition-table[state, tape[index]]
14: index++
15: end if
16: end if
17: end while

The recognition of a string by FA is like searching a tree. Considering the recognition of some string, say of
length n, for alphabet set Σ = {a, b}, one needs to perform a worst case search of O(2n) in space and time.
The time complexity remains O(2n) for both the Breadth First Search (BFS) as well as Depth First Search
(DFS). In general, if size of alphabet |Σ| = m, and length of string (sentence) is n, then space and time both
have complexities equal O(mn), for BFS.

In case of DFS, for above string, the space complexity is O(2× n), for branching factor (m = 2) and length
of string n. As a general case, it is O(mn). However, due to combinatorial explosion of number of states
generated (see Fig. 10.3), even shorter length strings, makes it difficult to efficiently process the input for
recognition. Since, the ordinary brute force algorithms, like DFS and BFS are highly inefficient, better
algorithms like best-first search, A∗, and SA (simulated annealing), which have better space complexity, are
used.

The search-tree in Fig. 10.3 shows that for input string of length n(= 5), and size of alphabet |Σ| = 2, there
are 25 = 32 different search paths in this tree to search the strings. And hence, for input |w| = n, and
|Σ| = m, there is combinatorial explosion of number of search paths.
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Figure 10.3: Binary search-tree of height 5

10.3 Finite State Transducers

A finite state transducer (FST) is a finite state machine with two tapes: an input tape and an output tape,
with finite number of states. The Fig. 10.4 shows the diagram where these (input and output) strings are
shown on the transitions, separated by “:” sign. This FST acts as a translator, as it translates the input
sentence “” Hello World” to “Hey there krc”.

Figure 10.4: An FST as a translator

Thus, an FST is a directed graph, like finite automata, with,

� Edges / transitions that have input / output labels,

� some times there are empty labels indicated by ε,

� Traversing through to the end of an FST implies many possible applications: the translation of one
string into another, generation of two strings, and relating one string to another,

� There is a defined state, called “start” state, and other as “final” state.

We define here, the FST as Mealy machine, which is an extension of normal finite state (FS) machine. The
formal representation of Mealy machine is given by,

M = (Q,Σ, q0, δ, F ) (10.1)

where,
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Q = {q0, q1, . . . , qN−1}, is finite set of states,

Σ is finite alphabet of complex symbols, and

Σ ⊆ I ×O, where I is set of input alphabet, and O is set of out alphabet

q0 is start state, and

δ : Q× Σ→ Q, for example, δ(q′, i : o) = qj is transition function.

The input (I) and output (O) symbols, both include the empty string symbol ε. For Σ = {a, b, !}, cor-
responding to the sheep-talk language discussed earlier, the FST has i : o set as, {a:a, b:b, !:!, a:!, a:ε,
ε:!}.

The FSTs are useful for variety of applications:

� Word inflections:1 For example, finding the plural of the words, cat → cats, dog → dogs, goose →
geese, etc.

� Morphological parsing: Extracting the properties of a word, e.g., cats → cat + [nouns] + [plural].

� Simple word translations: For example, US English to UK English.

� Simple commands to computer.

10.4 Sequential and P-subsequential Transducers

Sequential string-to-string transducers are used in natural language processing. Both determinization and
minimization algorithms are used for the class of p-subsequential transducers (p ≥ 1), which includes sequen-
tial string-to-string transducers2. In this section, the theoretical basis of the use of sequential transducers is
described. A sequential transducer is defined as follows:

Definition 10.1 A sequential transducer has deterministic input. At any state of such transducer, at most
one outgoing arc is labeled with a given element of the alphabet.□

Figure 10.5: Sequential Transducer

Fig. 10.5 shows an example of a sequential-transducer. Note that output labels might also include the empty
string (ε). However, an empty string is not allowed on input. The output of a sequential transducer is

1A change in the form of a word (typically the ending part) to express a grammatical function or attribute such as tense,
mod, person, number, case, and gender. Example: adding endings: -s to make a noun plural (book → books), -ed to put a verb
in the past tense, -er to form the comparative form of an adjective.

2Here P stands for number of strings which are handled in parallel. At the minimum, a transducer handles one input string,
and one output string, thus, the most common case is p = 2.
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not necessarily to be deterministic. For example in Fig. 10.5, where two distinct arcs with output labels b
leave the state q0. The Sequential transducers are computationally efficient because their use with a given
input does not depend on the size of the transducer but only on the size of the input. Using a sequential
transducer with a given input consists of following the only path corresponding to the input string and in
writing consecutive output labels along this path. Hence, the total computational time is linear in the size
of the input, provided that the cost of copying out each output label does not depend on its length.

Definition 10.2 String-to-string Transducer. A sequential string-to-string transducer T is a 7-tuple (Q, q0, F,Σ,∆, δ, σ),
where,

Q is set of states,

q0 is initial state,

F ⊆ Q is set of final states,

Σ is set of input alphabet,

∆ is set of output alphabet,

δ is state transition function, δ : Q× Σ→ Q, and

σ is output function, σ : Q× Σ→ ∆∗.

The functions δ and σ are generally partial functions, i.e., a state q ∈ Q does not necessarily admit outgoing
transitions labeled on the input side, with all elements of the alphabet. These functions can be extended to
mappings from Q× Σ∗ by the following classical recurrence relations:

∀s ∈ Q,∀w ∈ Σ∗,∀a ∈ Σ, there is, δ(s, ε) =s, δ(s, wa) = δ(δ(s, w), a); and

σ(s, ε) =ε, σ(s, wa) = σ(s, w)σ(δ(s, w), a). (10.2)

Thus, a string w ∈ Σ∗ is accepted by Transducer T iff δ(q0, w) ∈ F , and in that case the output of the
transducer is σ(q0, w).

10.4.1 Resolving Ambiguity

The Sequential transducers discussed above can be generalized by introducing the possibility of generating
an additional output string at final states. The application of the transducer to a string can then possibly
finish with the concatenation of such an output string to the usual output. Such transducers are called
sub-sequential transducers.

The language processing applications often require more general extensions due to ambiguities. For example,
the ambiguities encountered in language, like, ambiguities of grammars, morphological analyzers, and of
pronunciation dictionaries, cannot be taken into account when using sequential or subsequential transducers.
These devices associate at most a single output to a given input. In order to deal with ambiguities, one can
introduce p-subsequential transducers, namely transducers provided with at most p final output strings at
each final state (here p ≥ 2). Fig. 10.6 gives an example of a 2-subsequential transducer. Here, the input
string w = ba, gives two distinct outputs aba and abb with two strings at final state. Since one cannot find any
reasonable case in language in which the number of ambiguities would be infinite, p-subsequential transducers
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appears to be sufficient for describing linguistic ambiguities. However, the number of ambiguities could be
very large in some cases. Note that 1-subsequential transducers are exactly the subsequential transducers.

A string w ∈ Σ∗ is accepted by the transducer τ1 iff δ∗(q0, w) ∈ F and output of transducer is σ(q0, a).σ(δ(q0, a), u),
where w = au.

Figure 10.6: 2-Subsequential Transducer τ1

10.4.2 Composing P-subsequential Transducers

We know that transducers are devices that represent mappings from strings to strings. As such, they admit
the composition operation defined for mappings, using which one can construct more complex transducers
from simpler ones.

Consider that there are two transducers τ1 and τ2, such that these are in sequential order, first τ1 and then
τ2, i.e., an input string s is applied to τ1, and the output of that goes as input to τ2 (see Fig. 10.7). As
a result of the application of τ2 ◦ τ1, the string s can be computed by first considering all output strings
associated with the input s in the transducer τ1, then applying τ2 to all of these strings. The output strings
obtained after this application represent the result (τ2 ◦ τ1)(s). In fact, instead of waiting for the result of
the application of τ1 to be completely given, one can gradually apply τ2 to the output strings of τ1 yet to
be completed. This is the basic idea of the composition algorithm, which allows the construction of a single
transducer τ2 ◦ τ1 given transducers τ1 and τ2, and input s is applied to that transducer. That way, τ1
and τ2 will both be processing their input in parallel at different stages. This shows that subsequential and
p-subsequential transducers are closed on concatenation. If f : Σ∗ → ∆∗ be a p-subsequential transducer
and g : ∆∗ → Ω∗ be a q-subsequential transducer, then g◦f is pq-subsequential transducer. The transducers
τ1 and τ2 corresponds to functions f and g, respectively, as shown in Fig. 10.7. Note that, pq is product
term, e.g., if |p| = 2 and |q| = 3, the p.q will have six output sequences.

Figure 10.7: Concatenation of transducers τ1 and τ2

10.5 P-Subsequential Transducers for Language processing

Following are some of their applications in computational linguistics.
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10.5.1 Representation of Dictionaries

Very large-scale dictionaries can be represented using p-subsequential transducers because the number of
entries and that of the ambiguities they contain are finite. The corresponding representation offers fast
look-up, since the recognition does not depend on the size of the dictionary but only on that of the input
string considered. The minimization algorithm for sequential and p-subsequential transducers allows the size
of these devices to be reduced to the minimum. Experiments have shown that compact and fast look-up
representations for large natural language dictionaries can be efficiently obtained.

Dictionaries and sets use hash tables in order to achieve their O(1) look-ups and insertions. This efficiency
is the result of a very clever usage of a hash function to turn an arbitrary key (i.e., a string or object) into
an index for a list. The hash function and list can later be used to determine where any particular piece of
data is right away, without a search. By turning the data’s key into something that can be used like a list
index, we can get the same performance as with a list. In addition, instead of having to refer to data by a
numerical index, which itself implies some ordering to the data, we can refer to it by this arbitrary key.

10.5.2 Compilation of Morphological and Phonological Rules

Like dictionaries are represented, the context-dependent phonological and morphological rules can be repre-
sented by finite-state transducers. Most phonological and morphological rules correspond to p-subsequential
functions. Often, the result of the computation is not necessarily a p-subsequential transducer, but it can
often be determined using the determinization algorithm for p-subsequentiable transducers. This consider-
ably increases the time efficiency of the transducer. It can be further minimized to reduce its size. These
observations can be extended to the case of weighted rewrite rules.

10.5.3 Syntax

Finite-state machines are also commonly used to represent local syntactic constraints. Linguists can con-
veniently introduce local grammar transducers that can be used to disambiguate sentences. The number
of local grammars for a given language and even for a specific domain can be large. The local grammar
transducers are mostly p-subsequential. The determinization and minimization can then be used to make
the use of local grammar transducers more time efficient and to reduce their size. Since p-subsequential
transducers are closed under composition, the result of the composition of all local grammar transducers is
a p-subsequential transducer. The equivalence of local grammars can also be tested using the equivalence
algorithm for sequential transducers.

10.6 Subsequential String-to-Weight Transducers

We will consider string-to-weight transducers, i.e., transducers with input strings and output as weights.
These transducers are used in domains, such as language modeling, representation of word, or phonetic
lattices, etc. The usages can be done in the following way: one reads and follows a path in a directed graph
corresponding to a given input string and outputs a number obtained by combining the weights along this
path. In most applications to natural language processing, the weights are simply added along the path,
since they are interpreted as (negative) logarithms of probabilities3.

3For example, one path of a sequential string-to-weight transducer may have output “please/3, give/4, me/5, a/2, call/5”,
which makes a sentence with weight as, “please give me a call/19”. The other path of this transducer may have, “please/3,
call/6, me/7, a/2, give/0”, which makes a weighted sentence as, “please call me a give/18”. Naturally the first sentence should
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In case the transducer is not sequential, that is, when it does not have a deterministic input, one proceeds in
the same way for all the paths corresponding to the input string. In natural language processing, specifically
in speech processing, one keeps the minimum of the weights associated to these paths. This corresponds to
the Viterbi approximation in speech recognition or in other related areas for which hidden Markov models
(HMM’s) are used. In all such applications, one looks for the best path, i.e., the path with the minimum
weight.

In addition to the output weights of the transitions, string-to-weight transducers are provided with initial
and final weights. For instance, when used with the input string ab, the transducer in Fig. 10.8 outputs:
4 + 2 + 3 + 7 = 16, the 4 being the initial and 7 the final weight. For string b, the output is 4 + 6 + 7 = 17.

Figure 10.8: Sample Sequential string-to-weight Transducer

Definition 10.3 String-to-weight transducer. A string-to-weight transducer T is defined by T = (Q,Σ, I, F,E, λ, ρ)
with:

Q: a finite set of states,

Σ: the input alphabet,

I ⊆ Q: set of initial states,

F ⊆ Q: set of final states,

R+ : set of output weights,

E ⊆ Q× Σ× R+ ×Q: a finite set of transitions (E: set of edges),

λ : I → R+, initial weight function mapping input I to set of output weights R+, and

ρ : F → R+, the final weight function mapping set of final states F to R+.

For the transducer T , a transition (partial) function δ : Q× Σ→ 2Q can be defined as:

∀(q, a) ∈ Q× Σ,

δ(q, a) = {q′ | ∃x ∈ R+ : (q, a, x, q′) ∈ E, }

and an output function σ : E → R+ can be defined as:

∀t = (p, a, x, q) ∈ E, σ(t) = x

where ∀t stands for ”for all transitions t.
be accepted.
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A path π in T from q ∈ Q to q′ ∈ Q is a set of successive transitions from q to q′, given as:

π = ((q0, a0, x0, q1), ..., (qm−1, am−1, xm−1, qm)),

with,

∀i ∈ [0,m− 1], qi+1 ∈ δ(qi, ai).

The extended definition of σ to a path in graph is:

σ(π) = x0x1...xm−1.

Let us denote by π ∈ q ⇝ q′ the set of paths from q to q′ labeled with the input string w. The definition of
δ can be extended to Q× Σ∗ as:

∀(q, w) ∈ Q× Σ∗, δ(q, w) = {q′ : ∃ path π in T, π ∈ q ⇝ q′}.

Similarly, the δ can be extended to 2Q × Σ∗, by:

∀R ⊆ Q,∀w ∈ Σ∗, δ(R, w) =
⋃
q∈R

δ(q, w). (10.3)

10.7 English Language Morphology

Morphology is study of, how the words are constructed. Construction of English language words through
attachment of prefixes and suffixes (both together called affix) are called concatenative morphology, because
a word is composed of number of morphemes concatenated together. A word may have more than one affix,
for example rewrites (re+write+s), unlikely (un+like+ly), etc. There are broadly two ways to form words
using morphemes:

1. Inflection: Inflectional morphology forms words using the same group word stem, e.g., write+s,
word+ed, etc. The Table 10.2 shows the words constructed using inflective morphology.

It is modification of a word to express different grammatical categories. Inflectional morphology is
the study of processes, including affixation and vowel change, that distinguish word forms in certain
grammatical categories. Inflectional morphology consists of at least five categories, from language ty-
pology and syntactic description, i.e., grammatical categories and the lexicon. However, the derivational
morphology cannot be so easily categorized because derivation is not as predictable as inflection.

2. Derivation: Derivations morphology produce a words of different stem, for example computerization
(noun) from computerize (verb) – the words belong to different groups.

This morphology creates new lexemes, either by changing the syntactic category (part-of-speech) of a
base or by adding substantial, nongrammatical meaning or both. On the one hand, derivation may be
distinguished from inflectional morphology, which typically does not change category but rather modi-
fies lexemes to fit into various syntactic contexts; inflection typically expresses distinctions like number,
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Table 10.2: Inflectional Morphology

Type Regular nouns Irregular
nouns

Singular cat, thrush mouse, ox
Plural cats, thrushes mice, oxen

case, tense, aspect, person, among others. On the other hand, derivation may be distinguished from
compounding, which also creates new lexemes, but by combining two or more bases rather than by af-
fixation, reduplication, subtraction, or internal modification of various sorts. Although the distinctions
are generally useful, in practice applying them is not always easy.

Table 10.3: Derivational Morphology

Suffix Base
verb/adjective

Derived
Noun

-ation computerize (V ) Computerization
-ee appoint (V ) appointee
-er kill (V ) killer
-ness fuzzy (A) fuzziness

The examples of regular verbs are walk, walks, walking, walked. Similarly, irregularly inflected verbs are:
“eat, eats, eating, ate, eaten, catch, catches, cut, cuts, cutting, caught,” etc.

The derivation is a combination of word stem with grammatical morpheme, usually resulting in a word
of different class. For example, formation of nouns from verbs and adjectives. The Table 10.3 shows the
examples of derivational morphology.

Before we can do the morphological analysis, the text sentence need to be tokenized, which through NLTK
(Natural Language Toolkit) and Python language, as shown in the following example.

Example: Sentence tokenization using Python.

$ python

python 3.7.6 (default, Jan 8 2020)

>>> from nltk import tokenize

>>> text="This is a simple sentence, that any one can

write."

>>> tokens=nltk.word_tokenize(text)

>>> print(tokens)

[’This’, ’is’, ’simple’, ’sentence’, ’,’, ’that’, ’any’,

’one’, ’can’, write’, ’.’]

>>>

□

There are various approaches to morphology, as follows:
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Morpheme Based Morphology Word-based morphology is often a word-and-paradigm approach. The
theory takes paradigms as a central notion. Instead of stating rules to combine morphemes into word forms
or to generate word forms from stems, word-based morphology states generalizations that hold between the
forms of inflectional paradigms.

Lexeme Based Morphology Lexeme-based morphology usually takes what it is called an “item-and
process” approach. Instead of analyzing a word form as a set of morphemes arranged in sequence, a word
form is said to be the result of applying rules that alter a word-form or stream in order to produce a new
one.

Word based Morphology Word-based morphology is usually a word-and -paradigm approach instead of
stating rules to combine morphemes into word forms.

10.8 Application of Morphological Analysis

One application is in Text to Speech Synthesis. The morphological analysis can be used to reduce the size
of lexicon and also plays an important role in determining the pronunciation of a homograph.

Other application is in Machine translation. Machine translation mainly helps the people who are belonging
to the different communities and want to interact with the data present in the different languages. In lack
of Morphological analysis, we need to store all the word forms, this will increase the size of database and
will take more time to search. One more benefit of this analyzer is it provides the information of the word
such as number, gender. This information can be used in target language to generate the correct form of
the word.

Other application is in Spell Checker. A Spell checker is an application that is used to identify whether
a word has been spelled correctly or not. Spell checker functionality can be divided into two parts: Spell
check error detection and Spell check error correction. Spell check error detection phase only detects the
error while Spell check error correction will provide some suggestions also to correct the error detected by
Spell check error detection phase. One more advantage of using morphology based spell checker is that it
can handle the name entity problem. If any word is not included in the lexicon, can be added easily.

Other application is in Search Engine. Morphological Analysis and Generation improves the result of the
search engine. Suppose if a word is provided as a input but this word is not present in the lexicon, in that
case Morphological analysis of that word is done.

10.9 Morphology and Finite-state Transducers

To know the structure about a word when we perform themorphological parsing for that word, given a surface
form (input form), e.g., “going” we might produce the parsed form: verb-go + gerund-ing. Morphological
parsing can be done with the help of finite-state transducer. A morpheme is a meaning bearing unit of any
language. For example,

fox: has single morpheme, fox,

cats: has two morphemes, cat, -s,

Similarly, eat, eats, eating, ate, eaten have different morphemes.
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Some examples of mapping of certain words and corresponding morphemes are given in the Table 10.4, these
mapping of input and output corresponds to the input and output of finite state transducers.

Table 10.4: Mapping of input word to Morphemes.

Input
Words

Morphological parsed
output

cats cat +N +PL
cat cat +N +SG
cities city +N +PL
geese goose +N +PL
goose goose +V +3SG
caught catch +V +PAST-Part

In speech recognition, when a word has been identified, like cats, dogs, it becomes necessary to produce its
morphological parsing, to find out its true meaning, in the form of its structure, as well to know how it is
organized. These include the features, like N (Noun), V (Verb), specify additional information about the
word stem, e.g., +N means that word is noun, +SG means singular, +PL for plural, etc.

10.9.1 Databases for Morphological Parsing

The following databases are needed for building a morphological parser:

1. Lexicon. List of stems, and affixes, plus additional information about them, like +N, +V.

2. Morphotactics rules. Rules about ordering of morphemes in a word, e.g. -ed is followed after a verb
(e.g., worked, studied), un (undo) precede a verb, for example, unlock, untie, etc.

3. Orthographic rules (spelling rules). For combining morphemes, e.g., city+ -s gives cities and not citys.

We can use the lexicons together with morphotactics (rules) to recognize the words with the help of finite
automata in the form of stem+affix+part-of-speech (N , V , etc).

10.9.2 Morphological Parsing

The Table 10.5 shows some examples of regular and irregular nouns, and the Fig. 10.9 shows the basic
idea of parsing of nouns using morphological parsing. The regular-noun, e.g., “cat” has corresponding three
transitions c-a-t between q0 and q1 states.

Figure 10.9: Morphological Parsing of nouns
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Table 10.5: Regular and Irregular nouns.

Reg-
noun

Plural Irreg-
noun

Irreg-sg-
noun

fox -es goose geese
cat -s sheep sheep
dog -s mouse mice

Similarly, what is shown as a single transition for irregular-noun between q0 and q2 states, actually consists
sequence of transitions, e.g., for the word “goose” there are five transitions, and for plural noun “geese”
there are also five transitions. Such detailed transitions for parsing of noun words are shown in Fig. 10.10.

Figure 10.10: Morphological Parsing for noun words in details

At the next stage, the lexicon can be expanded to sub-lexicons, i.e, individual letters, to be recognized by
the finite automata. For example, regular-noun in Fig. 10.9 can be expanded to letters “f o x” connected
by three states in a transition diagram. The three transitions are f : f, o : o, x : x. Similarly, the regular
verb stem in Fig. 10.11 can be expanded by letters “w a l k”, and so on, as shown in Fig. 10.10. Note that
in the parsing of N , V , ADJ , and ADV discussed above, for the sake of simplicity we have not shown the
transitions separated by colon (‘:”), however, the FST has two tapes as usual, for input and output.

Figure 10.11: Morphological Parsing of verbs

A similar arrangement is possible for verbs’ morphological parsing (see Fig. 10.11, and Table 10.6). The
lexicon for verbal inflection have three stem classes (reg-verb stem, irreg-verb stem, and irreg-past-verb),
with affix classes as: -ed for past and participle, -ing for continuous, and 3rd person singular has -s.

Adjectives can be parsed in the similar manner like, the nouns and verbs. Some of the adjectives of English
language are: big, bigger, biggest, clean, cleaner, cleanest, happy, unhappy, happier, happiest, real, really,
unreal, etc. The finite automata in Fig. 10.12 is showing the morphological parsing for adjective words.
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Table 10.6: Regular and Irregular verbs

Reg-
verb

Past Irreg-
verb

Irreg-
past-v

Cont. 3sg

walk -ed catch caught -ing -s
fry -ed eat ate -ing -s
talk -ed sing sang -ing -s

Figure 10.12: Morphological Parsing for adjectives

10.10 Morphological Analysis using Finite State Transducers

The objective of the morphological parsing is to produce output lexicons for a single input lexicon, e.g.,
like it is given in table 10.7. The second column in the table contains the stem of the corresponding word
(lexicon) in first column, along with its morphological features, like, +N means word is noun, +SG means
it is singular, +PL means it is plural, +V for verb, and pres-part for present participle. We achieve it
through two level morphology, which represents a word as a correspondence between lexical level – a simple
concatenation of lexicons, as shown in column 2 of Table 10.7, and a surface level as shown in column 1.
The two columns corresponds to two tapes of a finite state transducer 10.13.

Table 10.7: Lexical Transformation table.
Input Parsed output
cat cat +N +SG
cats cat +N +PL
geese goose +N +PL
reading read +V +Pres-

part

Figure 10.13: A FST

The FST is a multi-function device, and can be viewed in the following ways:

� Translator: It reads one string on one tape and outputs another string on other tape, it may receive
input “cats” on surface tape, and produce parsed output “cat +N +PL” on lexical tape. Alternatively,
the role of input and output tape can be interchanged.
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� Recognizer: It takes a pair of strings as two tapes and accepts/rejects based on their matching. Foe
example, when both the contents are as shown in Fig. 10.13, then it accepts translation, if one of the
tape is having different contents, then the FST rejects (no match).

� Generator: It outputs a pair of strings of that language, on two tapes along with yes/no result based
on whether they are matching or not. Hence, acts as generator.

� Relater: It compares the relation between two sets of strings available on two tapes.

10.10.1 Closure properties of FSTs

Like FSA (Finite State Automata) are isomorphic to regular expressions, the FSTs are isomorphic to regular
relations. The FSTs are closed on the following relations:

1. Union: If R1 and R2 are relations on FST, then R1 ∪R2 is also a relation on FST.

2. Composition: If T1 is FST from I1 to O1, and T2 is FST from I2 to O2, then T2 ◦ T1 is FST from I1
to O2.

3. Inversion: The FSTs are closed on inversion. A transducer T−1 simply switches the input and output
labels on each transition.

The composition operation is useful because it replaces two FST running in series by a single FST. The
composition works as in algebra. Applying T2 ◦ T1 to input sequence S is equal to applying T1 to S, and
then T2 to result T1(S), i.e.,

T2 ◦ T1(S) = T2(T1(S)) (10.4)

Similarly, the composition is useful to convert a FST as parser to FST as a generator4,5.

10.10.2 Morphological parsing using FST

In two level morphology, the lexical tape is composed of symbols from a in a : b pairs, and the surface tape
comprises the symbols from b in this pair. Hence, each symbol pair a : b gives mapping from one tape to
other tape. The symbols a : a are called default pairs and written simply as a, as Fig. 10.14 shows transitions:
q0 − q1.

The Fig. 10.14 shows the transition diagram for FST with additional symbols +SG (singular), +PL (plural),
corresponding to each morpheme. These symbols map to empty string (ε), as there are no corresponding
symbols on output (surface) tape. The word, stem is basic word, for example, “cat” is stem for both its
singular and plural forms.

The symbol # stands for boundary symbol. Typical example of mapping, e.g., in case of word “geese”
(irregular noun) on surface tape, will be parsed into goose +N +PL on lexical tape, and symbols on the arc
joining states q0 - q2 are “g : g o : e o : e s : s e : e”, which is written as “g o : e o : e s e”. Since, there

4Parser : A parser converts a word into its constituent components, e.g., “cats” is parsed into “cat +N +PL.”
5Generator: Given “cat” as a lexicon for noun, and that its plural form +PL, use “cat +N +PL”, generate the word “cats.”
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Figure 10.14: Morphological Parsing using FST

are five letters in the word, there will be five state transitions between q0 - q2. For regular noun, like fox, it
will be “f : f o : o x : x”. The surface form “geese” is mapped to lexical form “goose +N +SG” through
cascading the FSTs, where two automata are run in series, i.e. output of first becomes input to next. This
is what we discussed earlier as P-subsequential transducer.

Instead of cascading two transducers, we perform this job using composition operator. Composing the
transducers in this way helps in taking many different levels of input and outputs, and converting them
into a single two level transducer with one input and one output tape. A typical FST, which results for
morphological parsing of “cat” is shown in Fig. 10.15, producing a mapping c:c a:a t:t +N:ε +PL:∧S#. The
symbol sequence +PL maps to ∧S. The symbol ∧ indicates the morpheme boundary, and # indicates the
word boundary. In fact, the fist transducer T1 will have surface tape as input and the intermediate tape as
output. And, the second transducer (T2) has intermediate tape as input and lexical tape as output tape.
Hence, the composition L = T2 ◦ T1(S), where S source tape and L is content of lexical tape.

Figure 10.15: Morphological Parsing with Lexical and Intermediate tapes

10.10.3 Implementing Orthographic Rules

We note that concatenating the morphemes can work to parse the words like “dog”, “cat”, “fox”, but this
simple method does not work when there is spelling change, like “foxes” is to be parsed into lexicons “fox
+N +PL” or “cats” is to be parsed into “cat +N +3SG”, etc. This requires introduction of spelling rules
(also called orthographic rules).

To account for the spelling rules, we introduce another tape, called intermediate tape, which produces the
output slightly modified, thus going from 2-level to 3-level morphology. Such a rule maps from intermediate
tape to surface tape. For plural nouns, the rule states, “insert e on the surface tape just when intermediate
tape has a morpheme ending in x or z or s and next morpheme is -s”. The examples are ox to oxes, fox to
foxes, rose to roses, doss to dosses, etc.

Definition 10.4 (Chomsky and Hall rule).The rule is stated as in equation (10.5),
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ε→ e/

 x
s
z

 ∧ −−− S# (10.5)

and called Chomsky and Hall notation. A rule of the form a→ b/c− d means rewrite a as b, when it occurs
between c and d.□

Since symbol ε is null, and it occurs between ∧ and S on intermediate tape, therefore replacing ε (null) by e
means inserting e between ∧ and S. In the symbol ∧ indicates morpheme boundary. These boundaries are
deleted by including the symbol pair ∧ : ε in Fig. 10.14, the default pairs for the transducer (I : O), i.e., in
the graph, the symbol ‘:’ indicates that 1st symbol is on intermediate tape and ε is on surface tape. The
mapping of symbols shown in Fig. (10.16), is called morphological parsing. There are n number of FSTs,
indicating that there are n number of rules encoded.

Figure 10.16: Morphological Parsing using 3-tape FSTs

Using these multi-level FSTs in sequence between different tapes, as well as through parallel transducers
for spelling checks, we are able to parse those words whose morphological analysis is simple. However,
considering the sentence “The police books the right culprit”, here it is not clear as per above rules that
whether the lexical parser’s output is “book +N +PL” or it is“book +V +3SG” ! However, to human it is
not difficult to infer that it is the second option. This is due to the ambiguity in the word, which may be a
noun or a verb, depending on its position in a sentence. This type of ambiguity is called lexical ambiguity,
and is the subject of later discussions.


