Closure properties of Context-free languages and Gmammars

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Former Professor & Head, Department of Computer Sc. & Engineering MBM Engineering College, Jodhpur

Saturday 19th July, 2025

K.R. Chowdharv

Theory of Computation

Automata, Formal Languages, Computation and Complexity

Focuses on pedagogy in its writing, that represents a refreshing approach

Ensures comprehensive and enjoyable learning

Undergone a rigorous classroom testing

©2025

Get 20% off with this code: SPRAUT

Available on Springer Nature Link

link.springer.com/book/ 9789819762347

Please note that gromational coupons are only valid for English-language Saringes, Agents, and Palgraw Macrollin book A effocts and sar re-entrals en olists. Agents are only "Rist adjected jight feed to sight rich as principality in the control of the control o

Closure properties of CNF

• **Intersection of two CFLs:** Let G_1 , G_2 be two context-free grammars.

$$G_{1}: \qquad G_{2}:$$

$$S \rightarrow AB, \ S \rightarrow A, A \rightarrow 0A1 \qquad S \rightarrow BA, \ S \rightarrow A, \ A \rightarrow 1A0$$

$$B \rightarrow 0B, \ B \rightarrow 0 \qquad A \rightarrow 10, \ B \rightarrow 0B, \ B \rightarrow 0$$

$$\therefore L(G_{1}) = \{0^{n}1^{n}0^{+}\} \qquad \therefore L(G_{2}) = \{0^{+}1^{n}0^{n}\}$$

$$\therefore L_{1} \cap L_{2} = 0^{n}1^{n}0^{n} \notin CFL \text{ for } n > 1.$$

- Union of two CFLs: For $L_1 = (G_1)$ and $L_2 = (G_2)$, $L_1 \cup L_2 \in CFL$. $S \to S_1 | S_2$, and $V_1 \cap V_2 = \phi$ $P = P_1 \cup P_2 \cup \{S \to S_1 | S_2\}$, $V = V_1 \cup V_2 \cup \{S\}$, $\Sigma = \Sigma_1 \cup \Sigma_2$.
- Concatenation of two CFLs: For $L_1 = (G_1)$ and $L_2 = (G_2)$, $L_1 \circ L_2 \in CFL$.

$$S o S_1 \circ S_2$$
, and $V_1 \cap V_2 = \emptyset$
 $P = P_1 \cup P_2 \cup \{S o S_1 \circ S_2\}, \ V = V_1 \cup V_2 \cup \{S\}, \ \Sigma = \Sigma_1 \cup \Sigma_2.$

• Kleene star of two CFLs: For $L_1=(G_1)$ and $L_2=(G_2)$, $L_1^*\in CFL$, where $S\to S_1S|\varepsilon$, $V_1\cap V_2=\phi$.

kr chowdhary TOC 2/7

Closure properties of CFLs

- CFL \cap Reg. lang \in CFL
- Let M_1 is NPDA accepting CF language L_1 by final state, and M_2 be a FA accepting L_2 . The PDA recognizing $L_1 \cap L_2$ simulates P and M simultaneously, like cross-product of two FA.
- We construct new *NPDA M* for $L_1 \cap L_2$ to simulate M_1 and M_2 in parallel.

Closure properties of CFLs

• CFL \cap Reg. lang \in CFL ...

- **Simulaiting start state:** For $q_0 \in M_1, p_0 \in M_2$ there is $(q_0, p_0) \in M$
- Simulaiting final state: For $q_1 \in F_1$, and $p_1, p_2 \in F_2$ there is $(q_1, p_1), (q_1, p_2) \in F$.

4/7

decision problems for CFLs

- Membership problem: For CFG G_1 , find if $w \in L(G)$? The membership algorithm is: Parser. That is, if we are able to obtain a parse-tree for given word w, then $w \mid L(G)$ else not.
- **Empty Language:** Is $L(G) = \phi$? Algorithm:
 - 1. Remove useless symbols
 - 2. Check if start symbol is useless? If yes, then $L(G) = \phi$ else not.
- Infinite Language Problem: Is L = L(G) an infinite language? Algorithm:
 - 1. remove useless symbols
 - 2. remove null and unit productions
 - 3. create dependency graph for variables
 - 4. if there is a loop in the dependency graph, then L is infinite language else not.

kr chowdhary TOC 5/

decision problems for CFLs

• Infinite Language Problem: Is L = L(G) an infinite language? ... Let the gramamr be:

$$S \rightarrow AB, A \rightarrow aCb|a, B \rightarrow bB|bb$$

$$C \rightarrow cBS$$

Since there is a loop in the dependency graph, the language is infinite. The derivation is $S \Rightarrow^* (acbb)^i S(bbb)^i$.

kr chowdhary

Bibliography

Chowdhary, K.R. (2025). Context-Free Grammars and Languages. In: Theory of Computation. Springer, Singapore.

https://doi.org/10.1007/978-981-97-6234-7_6