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Pumping Lemma for CFLs

Given any CFG G, L= (G ), we can convert it to CNF. The
parse-tree creates a Binary-tree.

Let G has V1 . . .Vm variables. Choose this as the value of longest
path in the derivation-tree (= 2m)(for G to be in CNF). A constant
p can be chosen such that p = 2m .

Let w = uvxyz , |w | ≥ p and w ∈ L(G ). Then followings hold:

1. A string in L of length m or less has yield length of 2m−1 or less.

2. Since p = 2m,∴ 2m−1 = p/2

3. ∴,w is too long to be yielded (obtained) from a parse-tree of
length (i.e. height) m.

Pumping Lemma for CFLs: (Bar-Hillel Lemma):

If a language L is CF, then there exists some integer p ≥ 1 such that
any string in L with |w | ≥ p (where p is pumping length) can be
written as: w = uvxyz , with substrings u,v ,x ,y ,z , such that
|uxy | ≥ p, |vy | ≥ 1 and,

uvnxynx ∈ L for every integer n ≥ 0.

All CF languages are guaranteed to satisfy this property.
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Pumping Lemma for CFLs

For a parse-tree of length m+1, choose a path to be m+1, yield
must be 2m, and |w | ≤ p.

Any parse-tree that yields w must have a path of at least m+1.

w = uvxyz , |w | ≥ p.

if k ≥m then at least 2 of these variables must be same (since there
are m unique variables).

Suppose the variables are same at Ai = Aj , where 1≤ i < j ≤ k.
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Pumping Lemma for CFLs . . .

Case of vy ̸= ε: The v ,y cannot be terminals, otherwise there
would not be Aj .

∴ we must have two variables, one of them must lead to Aj and
other must lead to v or y or both.

Case of |vxy | ≤ p: (The middle portion is no longer than p). That
is yield of subtree rooted at Ai , or for the longest path of m+1,
|vxy | ≤ p ≤ 2m+1−1. In case of Ai as A0, vxy is entire tree.
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Pumping Lemma for CFLs . . .

Case of ∀i ≥ 0,uv ixy iz ∈ L :

We can show this by Ai = Aj . Substituting Ai for Aj , the result is
uv1xy1z ,uv2xy2z , etc. The tree is shown below.

To show that a language is

not CF:

1.Some p must exist
indicating the maximum yield
and length of parse-tree.

2. Pickup w , breakup it into
uvxyz , such that |vxy | ≤ p,
|vy | ̸= ε,

3. We win by picking i , and
showing that uv ixy iz /∈ L.
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Pumping Lemma for CFLs . . .

Informally, the pumping lemma for CFLs states that for sufficiently
long strings, we can find two, short nearby substrings, that we “can
pump”in tandom, and resulting string must also be in the language.

The pumping lemma states that w can be decomposed into five
substrings. And, two substrings v ,y or one of them can be pumped
arbitrary times, and the language strings are still recognized.

The finite languages, which are regular, and hence context-free,
obey the pumping-lemma trivially by having p equal to the
maximum string’s length in L plus one.
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Application of Pumping Lemma for CFL

Example: Show that L= {apbpcp|p ≥ 0} /∈ CFL.

Assume that L is CFL, to contradict later, Let p is pumping length
of L. Let w = apbpcp ∈ L.

The pumping lemma tells us that w can be written as w = uvxyz ,
where u,v ,x ,y ,z are substrings of w .

As per theorem. |vxy | ≤ p, |vy | ≥ 1, and uv ixy iz ∈ L. for all i ≥ 0.

By the fact that |vxy | ≤ p, it can be seen that vxy can be contain
no more than two distinct letters. The possibilities are;

1. uxy = aj , for some j ≤ p

2. vxy = bj , for some j ≤ p

3. vxy = c j , for some j ≤ p

4. vxy = ajbk , for some j+k ≤ p

3. vxy = bjck , for some j+k ≤ p

for each case, it can be easily vaerified that uv ixy iz does not contain
equal numbers of each letter for any i ̸= 1. Thus, uv2xy2z does not
have the form aibic i . Hence, the contradiction, and L /∈ CFL.
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