Pushdown Automata-PDA

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Formerly, Prof. & Head, Department of CS MBM Engineering College, Jodhpur

Saturday 19th July, 2025

K.R. Chowdharv

Theory of Computation

Automata, Formal Languages, Computation and Complexity

Focuses on pedagogy in its writing, that represents a refreshing approach

Ensures comprehensive and enjoyable learning

Undergone a rigorous classroom testing

©2025

Get 20% off with this code: SPRAUT

Available on Springer Nature Link

link.springer.com/book/ 9789819762347

Please note that gromational coupons are only valid for English-language Saringes, Agents, and Palgore Macrollin book A effocts and sar re-entrals en olists. Agency and complete only size Lease Proteoming Gless and Otto temporary by not a validate on Saringer Matter Link are excluded from premotions, an evel-entree units, a sunfacest, and the complete of the Compl

Introduction to Pushdown Automata (PDA)

Definition

A PDA consists: a infinite tape, a read head, set of states, and a start state. The additional components from FA are: Pushdown stack, initial symbol on stack, and stack alphabets (Γ). PDA $M = (Q, \Sigma, \delta, s, \Gamma, Z_0, F)$, where,

Q is finite set of states.

 Σ is finite set of terminal symbols (language alphabets),

s start state (q_0) , F is final state.

 δ is transition function: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow \text{ finite subset of }$ $Q \times \Gamma$.

The transition function of a PDA is so defined, because a PDA may have transitions without any input read.

> 2/8 TOC

Introduction to PDA

The PDA has two types of storage; 1) infinite tape, just like the FA, 2) pushdown stack, is read-write memory of arbitrary size, with the restriction that it can be read or written at one end only.

Definition

ID (Instantaneous Description) of a PDA is: $ID: Q \times \Sigma^* \times \Gamma^*$, start-id $\in \{q_0\} \times \Sigma^* \times \{Z_0\}$, e.g., start ID may be (q_0, aaa, Z_0) .

> kr chowdhary 3/8

PDA Transitions

 $\delta(q,a,Z)=$ finite subset of $\{(p_1,\beta_1),(p_2,\beta_2),\ldots,(p_m,\beta_m)\}$. Therefore, $(p_i,\beta_i)\in\delta(q,a,z)$), for $1\leq i\leq m$.

By default, a *PDA* is non-derministic machine. Due to this fact, a *PDA* can manipulate the stack without any input from tape. Following are some of the transitions in *PDA*:

- Case (a): A PDA currently in state q, stack symbol A, with input ε , moves to state q and write ε on the stack: $\delta(q, \varepsilon, A) = (q, \varepsilon)$.
- Case (b): A PDA currently in state q, with ε input, and stack symbol ε , moves to state q, and writes A on stack: $\delta(q, \varepsilon, \varepsilon) = (q, A)$.
- Case (c): A PDA in state q,

reads input a, with stack symbol Z, moves to state p and write β on stack: $\delta(q, a, Z) = (p, \beta)$.

4/8

Language recognition: $a^n b^n$

A move of a PDA is defined as $(q, ax, Z\alpha) \vdash_M (q', x, \beta\alpha)$, if $(q', \beta) \in (q, a, Z)$. (In $Z\alpha$, Z is top symbol on stack)

Example

Construct a PDA to recognize $L = \{a^n b^n | n \ge 0\}$.

$$\begin{split} &M = (Q, \Sigma, \delta, s, F, \Gamma, Z_0), \\ &\Sigma = \{a, b\}, \ \Gamma = \{A\} \\ &Q = \{q_0, q_1, q_2, q_3\}, \ F = \{q_0, q_3\} \\ &\delta(q_0, \varepsilon, \varepsilon) = (q_1, Z_0) \\ &\delta(q_1, a, \varepsilon) = (q_1, A) \\ &\delta(q_1, b, A) = (q_2, \varepsilon) \\ &\delta(q_2, b, A) = (q_2, \varepsilon) \\ &\delta(q_2, \varepsilon, Z_0) = (q_3, \varepsilon) \end{split}$$

$$(q_0, aabb, \varepsilon) \vdash (q_1, aabb, Z_0)$$

 $\vdash (q_1, abb, AZ_0)$
 $\vdash (q_1, bb, AAZ_0)$

$$\vdash (q_2, b, AZ_0),$$

 $\vdash (q_2, \varepsilon, Z_0),$
 $\vdash (q_3, \varepsilon, \varepsilon),$ the PDA halts & accepts.

Language Recognition: wcw^R

Example

Construct a PDA to recognize $L = \{wcw^R | w \in \{a, b\}^*\}$.

Solution: Transition function, moves, and PDA:

$$M = (Q, \Sigma, \delta, s, F, \Gamma, Z_0)$$

$$\Sigma = \{a, b, c\}, d \in \{a, b\},\$$

$$Q = \{q_0, q_1, q_2\}, F = \{q_2\},$$

$$\Gamma = \{a, b, Z_0\}$$

$$\delta(q_0,d,\varepsilon)=(q_0,d)$$

$$\delta(q_0,c,\varepsilon)=(q_1,\varepsilon)$$

$$\delta(q_1,d,d)=(q_1,\varepsilon)$$

$$\delta(q_1, \varepsilon, \varepsilon) = (q_2, \varepsilon)$$

Note that we have not included the transitions corresponding to first writing Z_0 on stack and finally retrieving it back. This is acceptable as PDA is non-deterministic.

PDA moves

PDA moves

- 1. $(q, x, \alpha) \vdash^* (q', \varepsilon, \beta) \Rightarrow (q, xy, \alpha) \vdash^* (q', y, \beta)$
- 2. $(q, xy, \alpha) \vdash^* (q', y, \beta) \Rightarrow (q, xy, \alpha\gamma) \vdash^* (q', y, \beta\gamma)$

The case 1., above is obvious, however, the case 2., is not guaranteed due to the trace of computation shown below.

kr chowdhary

Bibliography

Chowdhary, K.R. (2025). Pushdown Automata and Parsers. In: Theory of Computation. Springer, Singapore. https://doi.org/10.1007/978-981-97-6234-7_8