Recursive and Recursively Enumerable Languages

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering
MBM Engineering College, Jodhpur

Monday 10t April, 2017

kr chowdhary TOC 1/11

Defining R and RE languages

]

Recursive: They allow a function to call itself. Or, a recursive
language is a recursive subset in the set of all possible words over
alphabet ¥ of that language.

Non-recursive should not be taken as simpler version of computation,
i.e., e.g., obtaining factorial value without recursion method.
Regular languages C context free languages C context sensitive
languages C recursive languages C recursive enumerable languages.
A language is Recursively Enumerable (RE) if some Turing machine
accepts it.

A TM M with alphabet ¥ accepts L if

L={w € X*|M halts with input w }

Let L be a RE language and M the Turing Machine that accepts it.
.., for w e L, M halts in final state. For w ¢ L, M halts in non-final
state or loops for ever.

A language is Recursive (R) if some Turing machine M recognizes it
and halts on every input string, w € ¥*. Recognizable = Decidable.
Or A language is recursive if there is a membership algorithm for it.
Let L be a recursive language and M the Turing Machine that
accepts (i.e. recognizes) it. For string w, if w € L, then M halts in

hen J\/ QAo n_nan-fina ate ha alwavysl
kr chowdhary TOC 2/ 11

o A/ O

Relation between Recursive and RE languages

Recursive
languages

RE but not
Recursive

- diagonal languages

- Non-RE

9 Every Recursive language is RE. -, if Mis TM recognizing L, the M
can be easily modified so its accepts L.

@ The languages which are non-RE cannot be recognized by TM.
These are diagonal (Lg) languages of the diagonal of x — y, where x;
is language string w;, and y; is TM M.

@ Language < M,w >, where M is TM and w is string, is not RE
language, since its generalized form is not Turing decidable
(undecidability proof), .., it is non-RE language.

kr chowdhary TOC 3/11

Every is recursive language can be enumerated

Theorem

If a language L is recursive then there exists an enumeration procedure
for it.

Proof.

o If ¥ ={a,b}, then M ’can enumerate strings:

a,b,aa,ab, ba,bb, aaa,....
----------------- Enumerating machine --------------------

M’ # M
——

Enumerates all
the strings of i/p actepts L
alphabets

@ Enumeration procedure: M “generates string w. M checks, if w € L;
if yes, output w else ignore w.

o Let L={a,ab,bb,aaa,...}. M output = {a,b,aa,ab,ba,bb,aaa,},
L(M)={a,ab,bb,aaa,...}; enumerated output = a,ab, bb, aaa, ...

kr chowdhary TOC 4/ 11

Class of Languages

@ recursive = decidable, their TM always halts
@ recursive enumerable (semi-decidable) but not recursive = their TM
always halt if they accept, otherwise halts in non-final state or loops.
@ non-recursively enumerable (non-RE) = there are no TMs for them.
Recursive languages are closed under complementation.
Theorem
If L is recursive then L is also recursive.
Proof.
@ The accepting states of M are made non-accepting states of M’
with no transitions, i.e., here M’ will halt without accepting.

@ If s is new accepting state in M’, then there is no transition from
this state.

@ If L is recursive, then L = L(M) for some TM M, that always halts.
Transform M into M “so that M “accept when M does not and
vice-versa. So M “ always halts and accepts L. Hence L is recursive.

IVE

—___accept accept
kr chowdhary TOC 5/ 11

Theorem Proof

Theorem
If L and L are RE, then L is recursive.

Proof.

o Let L =L(M;) and L = L(M,). Construct a TM M that simulates
My and Ms in parallel, using two tapes and two heads. If i/p to M is
in L, then M; accepts it and halts, hence M accepts it and halts. If
input to M is not in L, hence it is in L ., M accepts and halts,
hence M halts without accepting. Hence M halts on every i/p and
L(M) = L. So L is recursive.

M1 > Accept

Accept

Closure Properties:

Recursive languages are closed under union, concatenation,

RE Language

Theorem
A language L is recursive enumerable iff there exists an enumeration

procedure for it.

Proof.

@ If there is an enumeration procedure, then we can enumerate all the
strings, and compare each with w each time till it is found.

9 If the language is RE, then we can follow an enumerature procedure
to systematically generate all the strings.

| w]

Enumerator \g Accept
for L S Compareb‘%

while(1){ Machine that accepts L
generate()
compare()
if same exit()

}

kr chowdhary TOC 7/ 11

Intersection of RE and R languages

@ Given a Recursive and a RE languages: Their Union is RE,
Intersection is RE, Concatenation is RE, and Kleene's closure is RE.

@ if L is Recursive and L, is RE, then Lo —L; is RE and L; — L is
not RE.

Theorem
The intersection R and RE languages is RE.

Proof.

@ Let Ly and Ly be languages recognized by Turing machines My and
M., respectively.

@ Let a new TM M is for the intersection L1 N Ly. Mn simply
executes My and M, one after the other on the same input w: It
first simulates My on w. If My halts by accepting it, MM clears the
tape, copies the input word w on the tape and starts simulating M>.
If M, also accepts w then M accepts.

@ Clearly, M recognizes L1 N Ly, and if My and My halt on all inputs
then also M halts on all inputs.

O

kr chowdhary TOC 8/ 11

closure properties . ..

Theorem
The union of two Recursive languages is recursive.

Proof.
@ The TM corresponding to this must halt always. Let L; and L, be

sets accepted by My and M, respectively. Then L1 UL, is accepted
by TM M, where x = wy Uws, for wy € Ly and w, € Ly.

. 2 yes > yes
—13]

- - — ves 4=y Ves

M2 o 43 no

kr chowdhary TOC

Closure properties . . .

Theorem
The union of two RE languages is RE.

Proof.

@ Let Ly and L, be sets accepted by My and M,, respectively. Then
Ly Uty is accepted by TM M, where x = wy Uws, for wy € L; and
wy € L.

@ To determine if My or M, accepts x we run both My and M,
simultaneously, using a two-tape TM M. M simulates My on the
first tape and My on the second tape. If either one enters the final
state, the input is accepted.

M1 P ves
x
—
—— VES
T™M M

kr chowdhary TOC 10/ 11

Summary of R and RE
Recursive

RE but not
Recursive

- diagonal languages

- Non-RE

@ Both L and L are recursive, then both are in the inner circle.
Palindrome and CFG are recursive.

o Neither L or L are RE, the both are outside the outer ring.

o L is RE but not recursive, and L is non-RE: then first is in outer
circle, and second is in outer most space.

@ There are languages which are neither recursive nor RE (Ref:
Countable algorithms(TM) but uncountable languages)

@ Closure of recursive language in L; — L, follows from the fact that
these set difference can be expressed in terms of intersection and
complement.

@ Weak Result: If a language is recursive then there is an
enumeration procedure.

" kr chowdhary

