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Introduction to Simplification of Grammars

Parsing becomes easier if we add full generality in the grammar G .

In simplification of G , we remove 1) null-productions (also called
ε−productions), 2) unit-productions (chain-rules), and 3)
non-reachable symbols and corresponding productions.

But, the generating power of the grammar remains the same.

A variable symbol is useful if it appears in some derivation,
otherwise it is useless.

if ε /∈ L(G ), then all the ε−productions can be removed from the
grammar.

Normal Forms: Is some restrictions in the productions rules, for the
right hand side of a production, so that all the productions are in
some standard form. Two types normal forms exits:

CNF: Chomsky Normal Form Grammar: All the productions are
like: A→ BC , A→ a, where A,B,C ∈ V and a ∈ Σ.

GNF: Greibach Normal Form Grammar: All the productions are
like A→ aα, where a ∈ Σ and α ∈ V ∗.
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ε-productions, useless productions

Productions of the form A→ ε are called null productions. All these
productions can be eliminated from grammar if ε /∈ L(G ). Hence, in
this case the generating power of G remains unchanged.
If A⇒∗ ε then variable A is called nullable.
If B → X1X2 . . .Xn, then Xi can be dropped in this production if
∃Xi → ε. Such Xi ’s are called nullable. But if B → ε, then Xi ’s
cannot be eliminated.
Useless symbols and productions: Given the derivation
S ⇒∗ αXβ ⇒∗ w ∈ Σ∗, where α,β ∈ (V ∪Σ)∗, here X is useful
because it appears in some derivation.

Example

S → aSb|ε, B → bB, has B useless symbol and B → bB as useless
production. This is because B is not reachable from S , neither B
terminates to null or terminal.

Example

S → A,A→ aA|ε,B → bA, has B as useless symbol and B → bA as
useless production.
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Theorem

Theorem

If G = (V ,Σ,S ,P) with L(G ) ̸= φ , then there is an equivalent grammar
G ′ = {V ′,Σ,S ,P ′}, such that G ′ does not contain useless symbols and
productions, and L(G ) = L(G ′).

Proof.

We follow the following algorithm to systematically construct G ′:

1. For Ai → u,, where u ∈ Σ∗, move Ai to V ′, and Ai → u to P ′.

2. V = V −{Ai},P = P−{Ai → u}.
3. while ∃Aj → X1X2 . . .Xn ∈ P, where Xi ∈ V ′, or Xi ∈ Σ do

a. V ′ = V ′∪{Aj},
b. P ′ = P ′∪{Aj → X1X2 . . .Xn},
c. V = V −{Aj}, P = P−{Aj → X1X2 . . .Xn}
enddo

The tree for above is shown in next slide. The grammar constructed as
G ′ does not contains null productions as the same were removed in
advance, it does not contain the useless symbols and productions.

kr chowdhary TOC 4/ 9



Theorem condinued . . .

The figure shows that first of all we construct the bottom most subtree,
Ai , then Aj , and then A, till finally to S . This way only reachable
symbols from S , and corresponding productions are move to grammar G ′.
Therefore, no null or useless productions or symbols have been moved
into the grammar G ′. Thus generating power of G and G ′ are same.
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Removing unit productions

Productions of the form A→ B, where A,B ∈ V are called unit
productions.

Having removed useless symbols and productions, and
ε−productions, we remove the unit-productions.

Example: Given productions A→ B,B → bB|c , it can be
substituted by single production:

A→ bB|c . 2
If there is sequence of unit productions, and it gives a look of chain
like: A⇒∗ B, then all the unit productions can be removed
systematically. But, if there is situation like: A⇒∗ B, due to
A⇒ BC ⇒ B, and C → ε, then A⇒∗ B is not a chain.
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CNF Theorem

Theorem

If there is grammar G = (V ,Σ,S ,P, there exists an equivalent grammar
G ′ = (V ′,Σ′,S ,P ′) without unit-productions, ε−productions, and useless
symbols and productions, and is CNF .

Proof.

The ε−productions, unit-productions, and useless-productions and
symbols can be removed using the mathods discussed earlier. This
does not effect the generating power of the grammar.

The grammar availabe now has following format: A→ X1X2 . . .Xn.
For n = 1, the right hand side of a production has single symbol.
This will be termal only, as all the unit productions have been
removed.

For X ≥ 2, there is Xi ∈ (V ∪Σ). If Xi is terminal, say a, then
substitute a by Ci and introduce a new production Ci → a.
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CNF Theorem . . .

All the productions are now of the form: A→ a or A→ C1C2 . . .Cn.
All the productions like A→ C1C2 . . .Cn are reduced to A→ BC as
follows: (A→ C1C2 is already CNF). For n > 2, modify the
productions as follows:

A→ C1D1

D1 → C2D2

. . .

Dn−3 → Cn−2Dn−2

Dn−2 → Cn−1Dn.

This proves the theorem. 2
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